K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2018

Cách của bạn Nguyễn Hoàng Nam Thiên cũng đúng . Mik có cách khác nè : 

Ta có : 

\(x^3-16x=0\)

\(\Rightarrow x\left(x^2-16\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-16=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=16\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}}\)

Vậy \(\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)

P/s : Đúng nha

~ Ủng hộ nhé 

31 tháng 5 2018

x(x^2 - 16) = 0 
Nghiệm thứ nhất: x=0 
Tiếp tục: 
x^2 - 16 = 0 
x^2 - 4^2 = 0 
(x-4)*(x+4) = 0 
Nếu x-4=0 ta có nghiệm thứ hai x=4 
Nếu x+4=0 ta có nghiệm thứ ba x= -4 
Vậy phương trình có hệ nghiệm là: 
x=0 
x=4 
x= -4

19 tháng 7 2019

a) \(x^3-16x=0\)

\(\Leftrightarrow x\left(x^2-16\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{16}=\pm4\end{cases}}\)

Vậy \(x\in\left\{0;\pm4\right\}\)

19 tháng 7 2019

b) \(x^2-6x+9=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

22 tháng 7 2015

b) x(x - 3)+ 4( 3 - x) =0

=> x(x - 3) - 4( x - 3) = 0

=> (x - 3)( x - 4) =0

<=> x - 3 = 0  hoặc x - 4= 0

=>      x= 3    hoặc    => x= 4

Vậy x= 3 hoặc 4

a) 7x- 2x+ 56 - 16x = 0

=> x( 7 - 2x) + 8 ( 7 - 2x) = 0

=> ( 7 - 2x) ( x+8) =0

<=> 7 - 2x = 0  hoặc  x+ 8 =0

=>  x=  7/2      hoặc   x= -8 ( loại vì x\(\ge\) 0 )

Vậy x= 7/2

 

11 tháng 8 2023

a) \(4x^2+16x+3=0\)

\(\Delta'=84-12=72\Rightarrow\sqrt[]{\Delta'}=6\sqrt[]{2}\)

Phương trình có 2 nghiệm

\(\left[{}\begin{matrix}x=\dfrac{-8+6\sqrt[]{2}}{4}\\x=\dfrac{-8-6\sqrt[]{2}}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2\left(4-3\sqrt[]{2}\right)}{4}\\x=\dfrac{-2\left(4+3\sqrt[]{2}\right)}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\left(4-3\sqrt[]{2}\right)}{2}\\x=\dfrac{-\left(4+3\sqrt[]{2}\right)}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3\sqrt[]{2}-4}{2}\\x=\dfrac{-3\sqrt[]{2}-4}{2}\end{matrix}\right.\)

b) \(7x^2+16x+2=1+3x^2\)

\(4x^2+16x+1=0\)

\(\Delta'=84-4=80\Rightarrow\sqrt[]{\Delta'}=4\sqrt[]{5}\)

Phương trình có 2 nghiệm

\(\left[{}\begin{matrix}x=\dfrac{-8+4\sqrt[]{5}}{4}\\x=\dfrac{-8-4\sqrt[]{5}}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4\left(2-\sqrt[]{5}\right)}{4}\\x=\dfrac{-4\left(2+\sqrt[]{5}\right)}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\left(2-\sqrt[]{5}\right)\\x=-\left(2+\sqrt[]{5}\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-2+\sqrt[]{5}\\x=-2-\sqrt[]{5}\end{matrix}\right.\)

c) \(4x^2+20x+4=0\)

\(\Leftrightarrow4\left(x^2+5x+1\right)=0\)

\(\Leftrightarrow x^2+5x+1=0\)

\(\Delta=25-4=21\Rightarrow\sqrt[]{\Delta}=\sqrt[]{21}\)

Phương trình có 2 nghiệm

\(\left[{}\begin{matrix}x=\dfrac{-5+\sqrt[]{21}}{2}\\x=\dfrac{-5-\sqrt[]{21}}{2}\end{matrix}\right.\)

a, 4x2 - 49 = 0

⇔⇔ (2x)2 - 72 = 0

⇔⇔ (2x - 7)(2x + 7) = 0

⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72

b, x2 + 36 = 12x

⇔⇔ x2 + 36 - 12x = 0

⇔⇔ x2 - 2.x.6 + 62 = 0

⇔⇔ (x - 6)2 = 0

⇔⇔ x = 6

e, (x - 2)2 - 16 = 0

⇔⇔ (x - 2)2 - 42 = 0

⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0

⇔⇔ (x - 6)(x + 2) = 0

⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2

f, x2 - 5x -14 = 0

⇔⇔ x2 + 2x - 7x -14 = 0

⇔⇔ x(x + 2) - 7(x + 2) = 0

⇔⇔ (x + 2)(x - 7) = 0

⇔{x+2=0x−7=0⇔{x=−2x=7

26 tháng 7 2018

a)  \(7x^2-16x=2x^3-56\)

\(\Leftrightarrow\)\(2x^3-7x^2+16x-56=0\)

\(\Leftrightarrow\)\(2x\left(x^2+8\right)-7\left(x^2+8\right)=0\)

\(\Leftrightarrow\)\(\left(2x-7\right)\left(x^2+8\right)=0\)

\(\Leftrightarrow\)\(2x-7=0\)

\(\Leftrightarrow\)\(x=3,5\)

Vậy...

b)  \(x^7+x^3+2x^5+2x=0\)

\(\Leftrightarrow\)\(x.\left(x^6+x^2+2x^4+2\right)=0\)

\(\Leftrightarrow\)\(x\left(x^2+2\right)\left(x^4+1\right)=0\)

\(\Leftrightarrow\)\(x=0\)

Vậy...

c)  \(\left(2x+1\right)x-5\left(x+\frac{1}{2}\right)=0\)

\(\Leftrightarrow\)\(2x\left(x+\frac{1}{2}\right)-5\left(x+\frac{1}{2}\right)=0\)

\(\Leftrightarrow\)\(\left(2x-5\right)\left(x+\frac{1}{2}\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-5=0\\x+\frac{1}{2}=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2,5\\x=-0,5\end{cases}}\)

Vậy...