K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2017

a, \(\left(x-3\right)\left(x-2\right)< 0\)

\(x\in R\) nên \(x-3< x-2\) nên:

\(\left\{{}\begin{matrix}x-3< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\Rightarrow2< x< 3\)

Vậy....................

b, Giống câu a.

c, \(\left(x+3\right)\left(x-4\right)>0\)

\(\left\{{}\begin{matrix}\left\{{}\begin{matrix}x+3>0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x>-3\\x>4\end{matrix}\right.\\\left\{{}\begin{matrix}x< -3\\x< 4\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>4\\x< -3\end{matrix}\right.\)

Vậy.............

d, Giống câu c

e, Dạng giống câu a

Chúc bạn học tốt!!!

a)\(\left(x-3\right)\left(x-2\right)< 0\)

\(\left(x-3\right)\left(x-2\right)< 0\) nên phải có 1 số âm và 1 số dương

\(x-3< x-2\)

Nên ta có:

\(x-3< 0\)=>\(x< 3\)

\(x-2>0\)=>\(x>2\)

Do đó:\(2< x< 3\)

Vậy \(2< x< 3\)

Các câu sau tương tự

28 tháng 8 2017

Mk lm mẫu câu A, mấy câu sau tự lm nha, có j thì cmt bên dưới hỏi mk

(x+3)(x-2) < 0

=> (x+3) và (x-2) trái dấu

TH1: x+3 > 0 và x-2 < 0 => x > -3 và x < 2 => -3 < x <2

TH2: x+3 < 0 và x-2 > 0 => x <-3 và x > 2 => 2 < x <-3 (vô lí)

Vậy -3 < x <2

Lưu ý là ở đây có vô số x nên k liệt kê ra hết đc

3 tháng 7 2021

a)

\(\left(x-2\right)\left(x+7\right)\le0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2\ge0\\x+7\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2\le0\\x+7\ge0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2\le x\le-7\left(vô-lý\right)\\-7\le x\le2\end{matrix}\right.\)

=> -7 ≤ x ≤ 2

b) Em làm tương tự câu a nhé

c) \(\left(3x+1\right)\left(x-4\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x+1< 0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}3x+1>0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}>x>4\left(vô-lý\right)\\-\dfrac{1}{3}< x< 4\end{matrix}\right.\)

d) \(\left(x-1\right)\left(2x-1\right)>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>1\\x< \dfrac{1}{2}\end{matrix}\right.\)

6 tháng 9 2019

a, \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)

b. \(\left(x^2+1\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(Voly\right)\\x=4\end{cases}\Rightarrow x=4}\)

c, \(2x^2-\frac{1}{3}x=0\)

\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)

d, \(\left(\frac{4}{5}\right)^{5x}=\left(\frac{4}{5}\right)^7\)

\(\Rightarrow5x=7\)

\(\Rightarrow x=\frac{7}{5}\)

e, Ta có: \(A=\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)

Để A ∈ Z <=> (x - 2) ∈ Ư(7) = { ±1; ±7 }

x - 21-17-7
x319-5

 Vậy....

6 tháng 9 2019

a) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)

Vậy : ....

b) \(\left(x^2+1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(loại\right)\\x=4\end{cases}}\)

c) \(2x^2-\frac{1}{3}x=0\)

\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)

Vậy :...

22 tháng 6 2019

Bài 1 tôi làm 1 phần hướng dẫn thôi nhé các phần còn lại bạn nhìn theo mà làm . Nếu bí thì nhắn tin cho tôi để tôi làm nốt

a) \(|3x-1|-|2x+3|=0\left(1\right)\)

Ta có: \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)

       \(2x+3=0\Leftrightarrow x=\frac{-3}{2}\)

Lập bảng xét dấu :

3x-1 2x+3 -3/2 1/3 0 0 - - - + + +

+) Với \(x< \frac{-3}{2}\Rightarrow\hept{\begin{cases}3x-1< 0\\2x+3< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|2x+3|=-2x-3\end{cases}\left(2\right)}}\)

Thay (2) vào (1) ta được :

\(\left(1-3x\right)-\left(-2x-3\right)=0\)

\(1-3x+2x+3=0\)

\(-x+4=0\)

\(x=4\)( chọn )

+) Với \(\frac{-3}{2}\le x\le\frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1< 0\\2x+3>0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|2x+3|=2x+3\end{cases}\left(3\right)}}\)

Thay (3) vào (1) ta được :

\(\left(1-3x\right)-\left(2x+3\right)=0\)

\(1-3x-2x-3=0\)

\(-5x-2=0\)

\(x=\frac{-2}{5}\)( chọn )

+) Với \(x>\frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1>0\\2x+3>0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=3x-1\\|2x+3|=2x+3\end{cases}\left(4\right)}}\)

Thay (4) vào (1) ta được :

\(\left(3x-1\right)-\left(2x+3\right)=0\)

\(3x-1-2x-3=0\)

\(x-4=0\)

\(x=4\)( chọn )

Vậy \(x\in\left\{4;\frac{-2}{5}\right\}\)

22 tháng 6 2019

Bài 2:

a) Ta có: \(|2x+1|\ge0\forall x\)

\(\Rightarrow|2x+1|-7\ge0-7\forall x\)

Hay \(A\ge-7\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x+1=0\)

                         \(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Min A=-7 \(\Leftrightarrow x=\frac{-1}{2}\)

b) ko biết

c) Ta có: \(|1-x|+|x-2|\ge|1-x+x-2|\)

Hay \(C\ge-1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(1-x\right).\left(x-2\right)\ge0\)

( giải các th nếu ko giải đc thì nhắn tin riêng nhé :)) )

31 tháng 7 2017

Đại số lớp 7Đại số lớp 7

31 tháng 7 2017

ảnh ko theo trật tự và bị thiếu nên mk sẽ gửi lại 1 tấm nx và mong bn thông cảm cho Đại số lớp 7

20 tháng 9 2020

ngu thế à bạn