K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

\(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}+...+\dfrac{1}{255\cdot257}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}+...+\dfrac{2}{255\cdot257}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}+...+\dfrac{1}{255}-\dfrac{1}{257}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{257}\right)\)\(=\dfrac{1}{2}\cdot\dfrac{256}{257}=\dfrac{128}{257}\)

10 tháng 6 2017

Cảm ơn bạn nhìu lắm!Đại số lớp 7

14 tháng 10 2017

Ta có:\(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}=\dfrac{2}{\left(2n-1\right).\left(2n+1\right)}\)

Ta phân tích tổng thành:

\(\dfrac{1}{2}.\left[\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{\left(2n-1\right).\left(2n+1\right)}+...+\dfrac{2}{255.257}\right]\)

\(=\dfrac{1}{2}.\left[\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{255}-\dfrac{1}{257}\right]\)

\(=\dfrac{1}{2}.\left[1-\dfrac{1}{257}\right]=\dfrac{128}{257}\)

17 tháng 6 2017

a,\(\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{5}{7}-\dfrac{7}{9}+\dfrac{9}{11}-\dfrac{11}{13}+\dfrac{13}{15}+\dfrac{11}{13}-\dfrac{9}{11}+\dfrac{7}{9}-\dfrac{5}{7}+\dfrac{3}{5}-\dfrac{1}{3}\)

\(=\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(-\dfrac{3}{5}+\dfrac{3}{5}\right)+.....+\left(-\dfrac{11}{13}+\dfrac{11}{13}\right)+\dfrac{13}{15}\)

\(=0+0+...0+0+\dfrac{13}{15}=\dfrac{13}{15}\)

câu b và c xem lại đề nha

Chúc bạn học tốt!!!

17 tháng 6 2017

Đề đúng mà bạn

25 tháng 6 2021

a)

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}=\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)=\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}\)

 

P/s: Cj chỉ biết làm ý a thôi nhé! Có j ko hiểu cmt nhé!

25 tháng 6 2021

mình cần câu b lắm ,mà cũng cảm ơn bạn nha

 

8 tháng 12 2017

\(2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\)

\(=1-\dfrac{1}{2n+1}\Rightarrow A=\left(1-\dfrac{1}{2n+1}\right)\cdot\dfrac{1}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2n+1}< \dfrac{1}{2}\)

Vậy A < \(\dfrac{1}{2}\)

21 tháng 12 2017

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+.........+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(\Leftrightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+............+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\)

\(\Leftrightarrow2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+..........+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\)

\(\Leftrightarrow2A=1-\dfrac{1}{2n+1}\)

\(\Leftrightarrow A=\left(1-\dfrac{1}{2n+1}\right).\dfrac{1}{2}\)

\(\Leftrightarrow A=\dfrac{1}{2}-\dfrac{1}{2n+1}< \dfrac{1}{2}\)

\(\Leftrightarrow A< \dfrac{1}{2}\left(đpcm\right)\)

16 tháng 7 2023

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x.\left(2x+1\right)}=\dfrac{1}{10}\)

\(\Leftrightarrow\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{2x.\left(2x+1\right)}=\dfrac{1}{20}\)

\(\Leftrightarrow\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2x.\left(2x+1\right)}=\dfrac{1}{20}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2x}-\dfrac{1}{2x+1}=\dfrac{1}{20}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x+1}=\dfrac{1}{20}\)

\(\Leftrightarrow\dfrac{1}{2x+1}=\dfrac{9}{20}\)

\(\Leftrightarrow2x+1=\dfrac{20}{9}\Leftrightarrow x=\dfrac{11}{18}\)

16 tháng 7 2023

Em giải như XYZ olm em nhé

Sau đó em thêm vào lập luận sau:

\(x\) = \(\dfrac{11}{18}\)

Vì \(\in\) N* 

Vậy \(x\in\) \(\varnothing\)

16 tháng 7 2023

\(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + \(\dfrac{1}{28}\) + \(\dfrac{1}{36}\) +...+ \(\dfrac{2}{x\left(x+1\right)}\) = \(\dfrac{11}{40}\) (\(x\in\) N*)

\(\dfrac{1}{2}\).(\(\dfrac{1}{15}\)+\(\dfrac{1}{21}\)+\(\dfrac{1}{28}\)+\(\dfrac{1}{36}\)+.....+ \(\dfrac{2}{x\left(x+1\right)}\)) = \(\dfrac{11}{40}\) \(\times\) \(\dfrac{1}{2}\)

\(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)+...+ \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{11}{80}\)

\(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + \(\dfrac{1}{7.8}\)+...+ \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{11}{80}\)

\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)+...+ \(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\) = \(\dfrac{11}{80}\)

\(\dfrac{1}{5}\) - \(\dfrac{1}{x+1}\) = \(\dfrac{11}{80}\)

         \(\dfrac{1}{x+1}\) = \(\dfrac{1}{5}\) - \(\dfrac{11}{80}\)

           \(\dfrac{1}{x+1}\) = \(\dfrac{1}{16}\)

            \(x\) + 1 = 16

            \(x\)       = 16 - 1

             \(x\)     = 15 

\(=\dfrac{1}{2}\cdot\dfrac{2^2-1+1}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2-1+1}{\left(3-1\right)\left(3+1\right)}\cdot...\cdot\dfrac{2016^2-1+1}{\left(2016-1\right)\left(2016+1\right)}\)

\(=\dfrac{1}{2}\cdot\dfrac{2}{1}\cdot\dfrac{3}{2}\cdot...\cdot\dfrac{2016}{2015}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2016}{2017}\)

\(=\dfrac{1}{2}\cdot2016\cdot\dfrac{2}{2017}=\dfrac{2016}{2017}\)

23 tháng 11 2021

\(\Leftrightarrow\dfrac{1}{2}\left[\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}\right]=\dfrac{49}{99}\\ \Leftrightarrow1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow\dfrac{1}{2x+1}=\dfrac{1}{99}\\ \Leftrightarrow2x+1=99\Leftrightarrow x=49\)

23 tháng 11 2021

Em cảm ơn.