Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x + \(\frac{1}{x}\ge2\)
y2 + \(\frac{1}{y}+\frac{1}{y}\ge3\)
z3 + \(\frac{1}{z}+\frac{1}{z}+\frac{1}{z}\ge4\)
Cộng vế theo vế ta được
x + y2 + z3 + \(\frac{1}{x}+\frac{2}{y}+\frac{3}{z}\ge9\)
Dấu bằng xảy ra khi x = y = z = 1
1. \(\hept{\begin{cases}x^2+2y^2=4x-1\\y^2+2x^2=4y-1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x^2+2y^2\right)-\left(y^2+2x^2\right)=4x-1-\left(4y-1\right)\\\left(x^2+2y^2\right)+\left(y^2+2x^2\right)=4x-1+4y-1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y^2-x^2=4x-4y\left(1\right)\\3\left(x^2+y^2\right)=4\left(x+y\right)-2\left(2\right)\end{cases}}\)
Từ ( 1 ) \(\Rightarrow\left(y-x\right)\left(x+y\right)-4\left(x-y\right)=0\Leftrightarrow\left(y-x\right)\left(x+y+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\x+y=-4\end{cases}}\)
Với x = y thì thay vào ( 2 ), ta được : \(6x^2-8x+2=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}\)
Với x + y = -4 thay vào ( 2 ), ta được : \(3\left[\left(x+y\right)^2-2xy\right]=4.\left(-4\right)-2\)
\(\Leftrightarrow-6xy=-66\Leftrightarrow xy=11\)
Ta được hệ phương trình : \(\hept{\begin{cases}x+y=-4\\xy=11\end{cases}}\) mà hệ phương trình này vô nghiệm
2. Ta cần chứng minh BĐT : \(a^3+b^3\ge ab\left(a+b\right)\) với a,b > 0
Thật vậy, xét hiệu :
\(a^3+b^3-ab\left(a+b\right)=a^2\left(a-b\right)+b^2\left(b-a\right)=\left(a-b\right)\left(a^2-b^2\right)=\left(a-b\right)^2\left(a+b\right)\)\(\ge\)0
Áp dụng BĐT trên, ta có : \(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow x^3+y^3+1\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)
Tương tự : ....
\(\Rightarrow\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{x^3+z^3+1}\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}\)
\(=\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}=1\)
Vậy GTLN của biểu thức là 1 khi x = y = z = 1
https://l.facebook.com/l.php?u=https%3A%2F%2Fdiendan.hocmai.vn%2Fthreads%2Flai-mot-bai-hoi-bi-kho-ne.226600%2F&h=ATPqu0VSzda9HN6swPmBXeYI_mLVFweVVBz72hMQdgv8WnX0mStwGwBOxPLOstENmMST5KDKsbNuoFCvtOGM2CoqQpz94ahFl9MGizb0_iA8MRBBsDChfE7x3A22qDBUSKGjOjCJFPZu
Bài b nhé bạn!
\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\\\frac{1}{xz}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{\frac{1}{2}+\frac{5}{6}+\frac{2}{3}}{2}=1\)
Trừ lại từng phương trình trong hệ:
\(\hept{\begin{cases}\frac{1}{xy}=\frac{1}{2}\\\frac{1}{yz}=\frac{1}{6}\\\frac{1}{xz}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\xz=3\end{cases}\Rightarrow xyz=\sqrt{2.6.3}=6}\)
Chia lại từng phương trình trong hệ mới, được:
\(\hept{\begin{cases}z=3\\x=1\\y=2\end{cases}}\)
Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\)
Xong rồi đó!!!
Cộng 1 vào 2 vế của 3 pt ta được:
x+xy+y+1=1+1 <=> (x+1)(y+1)=2
y+yz+z+1=3+1 <=> (y+1)(z+1)=4
z+xz+z+1=7+1 <=> (z+1)(x+1)=8
Ta có: (x+1)(y+1)(y+1)(z+1)=(y+1)2 .8=2.4=8 => (y+1)2 =1
(y+1)(z+1)(z+1)(x+1)=(z+1)2 .2=4.8=32 => (z+1)2 =16
(z+1)(x+1)(x+1)(y+1)=(x+1)2 .4=2.8=16 => (x+1)2 =4
Do x;y;z không âm nên x= 1; y= 0; z= 3
=> M = 1 +02 +32 =10
\(\hept{\begin{cases}x+y=z\left(1\right)\\x^3+y^3=z^2\left(2\right)\end{cases}}\)
Ta thế (1) vào (2) : \(\left(x+y\right)^3-3xy\left(x+y\right)=\left(x+y\right)^2\)
<=> \(\left(x+y\right)^2-3xy=\left(x+y\right)\)
Đặt: \(x+y=S;xy=P\)vì x, y nguyên dương => S; P nguyên dương
ĐK để tồn tại nghiệm x, y là: \(S^2\ge4P\)
Có: \(S^2-3P=S\)
=> \(S+3P\ge4P\)<=> \(S\ge P\)
=> \(S^2-S=3P\le3S\)
<=> \(0\le S\le4\)
+) S = 0 loại
+) S = 1 => P = 0 loại
+) S = 2 => P =3/2 loại
+) S = 3 => P = 2
=> \(\hept{\begin{cases}x+y=3\\xy=2\end{cases}}\)<=> x =2; y =1 hoặc x = 1; y =2
=> (x; y; z ) = ( 1; 2; 3) thử lại thỏa mãn
hoặc (x; y; z) = ( 2; 1; 3 ) thử lại thỏa mãn
+) S = 4 => P = 4
=> \(\hept{\begin{cases}x+y=4\\xy=4\end{cases}\Leftrightarrow}x=y=2\)
=> (x; y; z ) = ( 2; 2; 4) thử lại thỏa mãn.
Vậy: có 3 nghiệm là:....