K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì gcd(x,x2+1)=1gcd(x,x2+1)=1 suy ra
Hoặc xy−1|;xxy−1|;x hoặc xy−1|x2+1xy−1|x2+1
Trường hợp 1 ta có: {x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]{x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]

Trường hợp 2 xét modulo xx ta có: {xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2{xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2

Thay các giá trị xx vào biểu thức ta tìm được yy

Cuối cùng các giá trị phải tìm là (x,y)∈{(1,2);(1,3);(2,1);(2,3)}(x,y)∈{(1,2);(1,3);(2,1);(2,3)}

2 tháng 9 2015

mình biết làm nhưng dài quá bạn tra trên google là đc

8 tháng 12 2017

mk hc nghu lém mk giải ko dc nhưng cho mk xin nha mấy bn yêu mấy bn nh`

8 tháng 12 2017

x=5 y=15

23 tháng 1 2020

Ta có : 4x3 + 14x2 + 9x - 6 = ( x + 2 ) ( 4x2 + 6x - 3 )

Chứng minh x+2 và 4x2 + 6x - 3 nguyên tố cùng nhau nên để 4x3 + 14x2 + 9x - 6 là số chính phương 

thì x + 2 và 4x2 + 6x -3 là số chính phương

đặt x + 2 = a2 ; 4x2 + 6x -3 = b2

\(\Rightarrow x=a^2-2\)  

Thay vào ta có : 4 ( a2 - 2 )2 + 6 ( a2 - 2 ) - 3 = b2 hay 4a4 - 10a2 + 1= b2

\(\Rightarrow16a^4-40a^2+4=4b^2\Rightarrow\left(4a^2-2b-5\right)\left(4a^2+2b-5\right)=21\)

Mà 0 < 4a2 - 2b - 5 < 4a2 + 2b - 5

..... tìm được x = 2

17 tháng 7 2016

Ta có:

\(2x^2+x=3y^2+y\)

\(\Leftrightarrow\)  \(\left(x-y\right)\left(2x+2y+1\right)=y^2\)  

Gọi  \(d\)  là  \(ƯCLN\left(x-y,2x+2y+1\right)\)  (với  \(d\in N^{\text{*}}\)). Khi đó, ta suy ra

\(\hept{\begin{cases}\left(x-y\right)\leftrightarrow\left(1\right)\\\left(2x+2y+1\right)\leftrightarrow\left(2\right)\end{cases}}\)  chia hết cho  \(d\)  \(\Rightarrow\)  \(\left(x-y\right)\left(2x+2y+1\right)\)  chia hết cho  \(d^2\)

Hay  \(y^2\)  chia hết cho  \(d^2\)  tức là  \(y\) chia hết cho  \(d\)

Nhưng vì  \(x-y\)   chia hết cho  \(d\)  (theo  \(\left(1\right)\)) nên  \(x\)  cũng phải chia hết cho  \(d\)

\(\Rightarrow\)  \(2x+2y\)  chia hết  cho  \(d\)  \(\left(3\right)\)

Từ  \(\left(2\right)\) và    \(\left(3\right)\)  suy ra  \(1\)  chia hết cho  \(d\)

Do đó,  \(d=1\)  đồng nghĩa với việc  \(\left(x-y,2x+2y+1\right)=1\)

Vậy,  phân số  \(\frac{x-y}{2x+2y+1}\)  tối giản vì cùng  nguyên tố cùng nhau