K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DB
0
15 tháng 10 2016
Áp dụng AM-GM ta có \(\frac{1^2}{x}+\frac{1^2}{x}+\frac{1^2}{y}+\frac{1^2}{z}\ge\frac{\left(1+1+1+1\right)^2}{2x+y+z}\)
hay \(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{16}{2x+y+z}\)
Tương tự : \(\frac{2}{y}+\frac{1}{x}+\frac{1}{z}\ge\frac{16}{2y+x+z}\) ; \(\frac{2}{z}+\frac{1}{x}+\frac{1}{y}\ge\frac{16}{2z+x+y}\)
Cộng theo vế : \(4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge16\left(\frac{1}{2x+y+z}+\frac{1}{2y+x+z}+\frac{1}{2z+x+y}\right)\)
\(\Leftrightarrow\)\(16\left(\frac{1}{2x+y+z}+\frac{1}{2y+x+z}+\frac{1}{2z+x+y}\right)\le16\)
\(\Leftrightarrow\frac{1}{2x+y+z}+\frac{1}{2y+x+z}+\frac{1}{2z+x+y}\le1\)
HV
0
NT
0
HM
0
Ta có:
\(2x^2+x=3y^2+y\)
\(\Leftrightarrow\) \(\left(x-y\right)\left(2x+2y+1\right)=y^2\)
Gọi \(d\) là \(ƯCLN\left(x-y,2x+2y+1\right)\) (với \(d\in N^{\text{*}}\)). Khi đó, ta suy ra
\(\hept{\begin{cases}\left(x-y\right)\leftrightarrow\left(1\right)\\\left(2x+2y+1\right)\leftrightarrow\left(2\right)\end{cases}}\) chia hết cho \(d\) \(\Rightarrow\) \(\left(x-y\right)\left(2x+2y+1\right)\) chia hết cho \(d^2\)
Hay \(y^2\) chia hết cho \(d^2\) tức là \(y\) chia hết cho \(d\)
Nhưng vì \(x-y\) chia hết cho \(d\) (theo \(\left(1\right)\)) nên \(x\) cũng phải chia hết cho \(d\)
\(\Rightarrow\) \(2x+2y\) chia hết cho \(d\) \(\left(3\right)\)
Từ \(\left(2\right)\) và \(\left(3\right)\) suy ra \(1\) chia hết cho \(d\)
Do đó, \(d=1\) đồng nghĩa với việc \(\left(x-y,2x+2y+1\right)=1\)
Vậy, phân số \(\frac{x-y}{2x+2y+1}\) tối giản vì cùng nguyên tố cùng nhau