\(\frac{n+43}{^{n^2-2016}}\)không tố...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nhận xét:

+) Với x \(\geq\) 0 thì | x | + x = 2x

+) Với x < 0 thì | x | + x = 0

Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z

Áp dụng nhận xét trên thì :

| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z 

\(\implies\) 2m + 2015 là số chẵn 

\(\implies\) 2m là số lẻ

\(\implies\) m = 0

Khi đó:

| n - 2016 | + n - 2016 = 2016

+) Nếu n < 2016 ta được:

 - ( n - 2016 ) + n - 2016 =2016

\(\implies\) 0 = 2016

\(\implies\) vô lí 

\(\implies\) loại 

+) Nếu n \(\geq\)  2016 ta được :

( n - 2016 ) + n - 2016 = 2016

\(\implies\) n - 2016 + n - 2016 = 2016

\(\implies\) 2n - 2 . 2016 = 2016

​​\(\implies\)​ 2 ( n - 2016 ) = 2016

\(\implies\) n - 2016 = 2016 : 2

\(\implies\) n - 2016 = 1008

\(\implies\) n = 1008 + 2016

\(\implies\) n = 3024 

\(\implies\)  thỏa mãn 

Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }

Nhận xét:

+) Với x \(\geq\) 0 thì | x | + x = 2x

+) Với x < 0 thì | x | + x = 0

Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z

Áp dụng nhận xét trên thì :

| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z 

\(\implies\) 2m + 2015 là số chẵn 

\(\implies\) 2m là số lẻ

\(\implies\) m = 0

Khi đó:

| n - 2016 | + n - 2016 = 2016

+) Nếu n < 2016 ta được:

 - ( n - 2016 ) + n - 2016 =2016

\(\implies\) 0 = 2016

\(\implies\) vô lí 

\(\implies\) loại 

+) Nếu n \(\geq\)  2016 ta được :

( n - 2016 ) + n - 2016 = 2016

\(\implies\) n - 2016 + n - 2016 = 2016

\(\implies\) 2n - 2 . 2016 = 2016

​​\(\implies\)​ 2 ( n - 2016 ) = 2016

\(\implies\) n - 2016 = 2016 : 2

\(\implies\) n - 2016 = 1008

\(\implies\) n = 1008 + 2016

\(\implies\) n = 3024 

\(\implies\)  thỏa mãn 

Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }

15 tháng 1 2018

\(\frac{1}{8}.16^n=2^n\)

\(\frac{16^n}{8}=2^n\)

\(\frac{\left(2^4\right)^n}{2^3}=2^n\)

\(\frac{2^{4n}}{2^3}=2^n\)

=> 23=24n:2n

23=23n

=> 3n=3

=> n=1

cho a,b thuộc n* và a/b tối giản .CMR :\(\frac{a}{a+b}\)tối giảntìm tất cả các số nguyên tố p sao cho p+2 và p+4laf số nguyên tố cho đương thẳng cy đi qua O .Trên cùng 1 nửa mặt phẳng bờ xy kẻ O z Ot sao cho \(\widehat{xOy}=130^0,\widehat{yOt}=100^0\)a)CMROz là tia phân giác \(\widehat{yOt}\)b)gọi Om là tia phân giác \(\widehat{zOt}\).tính \(\widehat{mOy}\)10 tìm số tự nhiên x sao...
Đọc tiếp

cho a,b thuộc n* và a/b tối giản .CMR :\(\frac{a}{a+b}\)tối giản

tìm tất cả các số nguyên tố p sao cho p+2 và p+4laf số nguyên tố 

cho đương thẳng cy đi qua O .Trên cùng 1 nửa mặt phẳng bờ xy kẻ O z Ot sao cho \(\widehat{xOy}=130^0,\widehat{yOt}=100^0\)

a)CMROz là tia phân giác \(\widehat{yOt}\)

b)gọi Om là tia phân giác \(\widehat{zOt}\).tính \(\widehat{mOy}\)

10 tìm số tự nhiên x sao cho:

\(\left(x-5\right)\frac{30}{100}=\frac{20x}{100}+5\)

11 tìm giá terij nguyên của n   để đạt GTLN

a|)D=\(\frac{n+1}{n-2}\)

b)\(\frac{1}{7-n}\)

c)\(\frac{27-2n}{12-n}\)

12 tìm giá trị nguyên của x để biểu thức sau có GTLN

a)A=\(\frac{1}{x-3}\)

b)\(\frac{7-x}{x-5}\)

c)\(\frac{5x+13}{x-4}\)

tí nữa mong các bn giải hộ ai làm đc hết mk tick cho 10 tik còn ai làm đầu tiên của mỗi bài thì đc 1 tik thôi

nhanh lên hộ tôi vs

từ lớp 7 trở lên mk ko làm đc học lại lớp 6

0

Nhận xét:

+) Với x \(\geq\) 0 thì | x | + x = 2x

+) Với x < 0 thì | x | + x = 0

Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z

Áp dụng nhận xét trên thì :

| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z 

\(\implies\) 2m + 2015 là số chẵn 

\(\implies\) 2m là số lẻ

\(\implies\) m = 0

Khi đó:

| n - 2016 | + n - 2016 = 2016

+) Nếu n < 2016 ta được:

 - ( n - 2016 ) + n - 2016 =2016

\(\implies\) 0 = 2016

\(\implies\) vô lí 

\(\implies\) loại 

+) Nếu n \(\geq\)  2016 ta được :

( n - 2016 ) + n - 2016 = 2016

\(\implies\) n - 2016 + n - 2016 = 2016

\(\implies\) 2n - 2 . 2016 = 2016

​​\(\implies\) 2 ( n - 2016 ) = 2016

\(\implies\) n - 2016 = 2016 : 2

\(\implies\) n - 2016 = 1008

\(\implies\) n = 1008 + 2016

\(\implies\) n = 3024 

\(\implies\)  thỏa mãn 

Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }