Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Ngân Hoàng Xuân - Toán lớp 8 | Học trực tuyến
Chọn C
Ta có
f(-3) = - (-3) - 3 = 0,
g(-3) = (-3)2 + 3 = 12,
h(-3) = (-3)2 - 9 = 0,
k(-3) = (-3)2-2.(-3) - 15 = 0
Nên x = -3 là nghiệm của f(x), g(x), k(x).
do m ;m+k ; m+2k là số nguyên tố >3
=> m;m+k;m+2k lẻ
=> 2m+k chẵn =>⋮⋮ 2
mặt khác m là số nguyên tố >3
=> m có dạng 3p+1 và 3p+2(p∈ N*)
xét m=3p+1
ta lại có k có dạng 3a ;3a+1;3a+2(a∈ N*)
với k=3a+1 ta có 3p+1+2(3a+1)=3(p+1+3a) loại vì m+2k là hợp số
với k=3a+2 => m+k= 3(p+a+1) loại
=> k=3a
tương tự với 3p+2
=> k=3a
=> k⋮3
mà (3;2)=1
=> k⋮6
Do m , m + k , m+2k là số nguyên tố > 3
=> m , m+k , m+2k lẻ
=> 2m+k chẵn => k chia hết cho 2
Mặt khác m là số nguyên tố > 3
=> m có dạng 3p+1 và 3p +2 ( p thuộc N* )
xét m = 3p + 1
Ta lại có k có dạng 3a ; 3a+1 ; 3a+2 ( a thuộc N* )
Với k = 3a+1 ta có 3p +1+2 ( 3a +1) = 3(p+1+3a)loại vì m+2k là hợp số
Với k = 3a+ 2 => m+k = 3(p+a+1) loại
=> k=3a
Tương tự vs 3p +2
=> k=3a
=> k chia hết cho 3
Mà (3;2) = 1
Nên => k chia hết cho 6
Ta có:
A = k4 + 2k³ - 16k² - 2k + 15
= k4 + 5k³ - 3k³ - 15k² - k² - 5k + 3k + 15
= ( k³ - 3k² - k + 3 ).( k + 5)
= (k² - 1).(k - 3).(k + 5)
Để A ⁞ 16
thì có nhiều trường hợp xảy ra.
TH1: A = 0 <=> k = { ±1 ; 3 ; - 5}
TH2:
Với k là số lẻ thì (k² - 1 ) ⁞ 8
cái này mình sẽ cm:
k² - 1 = (k - 1).(k + 1)
Với k là số lẻ thì k -1 và k + 1 là 2 số chẵn liên tiếp. Trong đó có 1 số chia hết cho 2 và 1 số chia
hết cho 4 => (k - 1).(k + 1) ⁞ 8
Đồng thời, với k lẻ thì k -1 hoặc k + 5 đều chia hết cho 2.
=> Tích sẽ chia hết cho 8 x 2 = 16
Vậy A ⁞ 16 <=> k là số lẻ.
Dễ thấy, TH2 bao hàm TH1 => Ta kết luận k là số lẻ thì A ⁞ 16
***Kiểm tra:
Với k là số chẵn => (k² - 1) là số lẻ
k - 3 là số lẻ
k + 5 cũng là số lẻ
=> A = (k² - 1).(k - 3).(k + 5) là số lẻ ko chia hết cho 16.
Ta có f(k) = k3 + 2k2 + 15
= (k3 + 9k2 + 27k + 27) - (7k2 + 27k + 12)
= (k + 3)3 - (7k2 + 27k + 18) + 6
= (k + 3)3 - (7k2 + 21k + 6k + 18) + 6
= (k + 3)3 - [7k(k + 3) + 6(k + 3)] + 6
= (k + 3)3 - (7k + 6)(k + 3) + 6
= (k + 3)[(k + 3)2 - 7k - 6) + 6
Vì (k + 3)[(k + 3)2 - 7k - 6) \(⋮\)k + 3
=> f(k) \(⋮\)g(k) khi 6 \(⋮k+3\)
=> \(k+3\inƯ\left(6\right)\)(k là số tự nhiên)
=> \(k+3\in\left\{3;6\right\}\)(Vì k \(\ge\) 0 => k + 3 \(\ge\) 3)
=> \(k\in\left\{0;3\right\}\)
Vậy \(k\in\left\{0;3\right\}\)thì f(k) \(⋮\)g(k)