Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm tất cả các số nguyên dương k sao cho tồn tại số nguyên dương n thỏa mãn 2n+11 chia hết cho 2k-1.
Để tìm tất cả các số nguyên dương k thỏa mãn điều kiện đã cho, ta sẽ giải phương trình theo n.
2n + 11 chia hết cho 2k - 1 có nghĩa là tồn tại một số nguyên dương m sao cho:
2n + 11 = (2k - 1)m
Chuyển biểu thức trên về dạng phương trình tuyến tính:
2n - (2k - 1)m = -11
Ta nhận thấy rằng nếu ta chọn một số nguyên dương nào đó, ta có thể tìm được một số nguyên dương k tương ứng để phương trình trên có nghiệm. Do đó, ta chỉ cần tìm tất cả các số nguyên dương n thỏa mãn phương trình trên.
Để giải phương trình này, ta có thể sử dụng thuật toán Euclid mở rộng (Extended Euclidean Algorithm). Tuy nhiên, trong trường hợp này, ta có thể tìm được một số giá trị n và k thỏa mãn phương trình bằng cách thử từng giá trị của n và tính giá trị tương ứng của k.
Dưới đây là một số cặp giá trị n và k thỏa mãn phương trình đã cho:
(n, k) = (3, 2), (7, 3), (11, 4), (15, 5), (19, 6), …
Từ đó, ta có thể thấy rằng có vô số giá trị n và k thỏa mãn phương trình đã cho.
\(2021n-19\equiv21n+21\left(mod40\right)\)suy ra ta cần chứng minh \(n+1⋮40\)(vì \(\left(21,40\right)=1\)).
Đặt \(m=n+1\). Ta sẽ chứng minh \(m⋮40\).
Đặt \(2m+1=a^2,3m+1=b^2\).
\(2m+1\)là số lẻ nên \(a\)là số lẻ suy ra \(a=2k+1\).
\(2m+1=\left(2k+1\right)^2=4k^2+4k+1\Rightarrow m=2\left(k^2+k\right)\)nên \(m\)chẵn.
do đó \(3m+1\)lẻ nên \(b\)lẻ suy ra \(b=2l+1\).
\(3m+1=4l^2+4l+1\Leftrightarrow3m=4l\left(l+1\right)\)có \(l\left(l+1\right)\)là tích hai số nguyên liên tiếp nên chia hết cho \(2\)do đó \(4l\left(l+1\right)\)chia hết cho \(8\)suy ra \(m⋮8\)vì \(\left(3,8\right)=1\).
Giờ ta sẽ chứng minh \(m⋮5\).
Nếu \(m=5p+1\): \(2m+1=10p+3\)có chữ số tận cùng là \(3\)nên không là số chính phương.
Nếu \(m=5p+2\): \(3m+1=15m+7\)có chữ số tận cùng là \(7\)nên không là số chính phương.
Nếu \(m=5p+3\): \(2m+1=10m+7\)có chữ số tận cùng là \(7\)nên không là số chính phương.
Nếu \(m=5p+4\): \(3m+1=15m+13\)có chữ số tận cùng là \(3\)nên không là số chính phương.
Do đó \(m=5p\Rightarrow m⋮5\).
Có \(m⋮8,m⋮5\)mà \(\left(5,8\right)=1\)suy ra \(m⋮\left(5.8\right)\Leftrightarrow m⋮40\).
Ta có đpcm.
để n^2 +2002 là số chính phương
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0)
=> a^2 -n^2 =2002
=> (a-n)(a+n) =2002
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4
=> vô lý
Ai giải được thì nhớ giải rõ ràng nhé! Xin cam ơn người giải được.
Từ hằng đẳng thức \(x^n-1=\left(x-1\right)\left(x^{n-1}+x^{n-2}+\cdots+1\right)\to x^n-1\vdots x-1\).
Ta có \(x^{3n+1}+x^{2n}+1=x\left(x^{3n}-1\right)+\left(x^2+x+1\right)+\left(x^{2n}-x^2\right)\) . Từ trên ta suy ra \(x^{3n}-1\) chia hết cho đa thức \(x^3-1,\) do đó \(x^{3n}-1\) chia hết cho đa thức \(x^2+x+1.\) Vậy \(x^{3n+1}+x^{2n}+1\) chia hết cho đa thức \(x^2+x+1\) khi và chỉ khi \(x^{2n}-x^2\) chia hết cho đa thức \(x^2+x+1.\)
Ta có \(x^{2n}-x^2=x^2\left(x^{2n-2}-1\right)\). Ta viết \(2n-2=3k+r,0\le r\le2.\)
Khi đó \(x^{2n-2}-1=x^{3k+r}-1=x^r\left(x^{3k}-1\right)+\left(x^r-1\right)\), thành thử \(x^r-1\vdots x^2+x+1\to r=0.\)
Vậy \(2n-2\vdots3\to n-1\vdots3\), hay \(n=3k+1,\) với \(k\) là số tự nhiên.
Đáp số: \(n=3k+1,\) với \(k\) là số tự nhiên tùy ý.