K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2021

Để A  nguyên thì \(n-2\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

hay \(n\in\left\{3;1;5;-1;9;-5;23;-19\right\}\)

20 tháng 2 2020

Bài 2:

a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3

b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3

\(\frac{n+4}{n-3}\)\(\frac{n-3+7}{n-3}\)\(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3

=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}

=> n\(\in\){ 4; 10; 2; -4}

Vậy...

c) Bn thay vào r tính ra

20 tháng 2 2020

la 120

22 tháng 1

a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2

=> (n - 2) + 3 ⋮ n - 2

 Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2

=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}

 => n ∈ {-1;1;3;5}

b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1

=> (4n - 2) + 7 ⋮ 2n - 1

=> 2(2n - 1) + 7 ⋮ 2n - 1

 Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1

=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}

=> n ∈ {-3;0;1;4}

12 tháng 2 2016

âm hay dươg

NV
6 tháng 1

\(A=\dfrac{3n+1}{n-2}=\dfrac{3n-6+7}{n-2}=\dfrac{3\left(n-2\right)+7}{n-2}=3+\dfrac{7}{n-2}\)

A nguyên \(\Rightarrow\dfrac{7}{n-2}\) nguyên

\(\Rightarrow n-2=Ư\left(7\right)\)

\(\Rightarrow n-2=\left\{-7;-1;1;7\right\}\)

\(\Rightarrow n=\left\{-5;1;3;9\right\}\)

AH
Akai Haruma
Giáo viên
25 tháng 8

Lời giải:

a. Để $B$ là phân số thì $n-4\neq 0$

$\Rightarrow n\neq 4$

b. Với $n$ nguyên, để $B$ nguyên thì:

$n\vdots n-4$

$\Rightarrow (n-4)+4\vdots n-4$

$\Rightarrow 4\vdots n-4$

$\Rightarrow n-4\in \left\{\pm 1; \pm 2; \pm 4\right\}$

$\Rightarrow n\in \left\{5; 3; 6; 2; 8; 0\right\}$

25 tháng 1 2022

\(B=\dfrac{n}{n-4}=\dfrac{n-4+4}{n-4}=1+\dfrac{4}{n-4}\Rightarrow n-4\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n - 41-12-24-4
n536280

 

25 tháng 1 2022

\(B=\dfrac{n}{n-4}=\dfrac{n-4+4}{n-4}=1+\dfrac{4}{n-4}\)

\(Để.B\in Z\Rightarrow\dfrac{4}{n-4}\in Z\Rightarrow n-4\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\Rightarrow n\in\left\{0;2;3;5;6;8\right\}\)

DD
30 tháng 3 2021

\(\frac{n+1}{2n-1}\inℤ\Rightarrow\frac{2\left(n+1\right)}{2n-1}=\frac{2n-1+3}{2n-1}=1+\frac{3}{2n-1}\inℤ\Leftrightarrow\frac{3}{2n-1}\inℤ\)

\(\Leftrightarrow2n-1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\Leftrightarrow n\in\left\{-1,0,1,2\right\}\)

Thử lại ta được \(n\in\left\{-1,0,1,2\right\}\)thỏa mãn. 

30 tháng 1 2022

a, đk : n khác 2 

b, Với n = 0 => \(A=\dfrac{0+4}{0-2}=\dfrac{4}{-2}=-2\)

Với n = -2 => \(A=\dfrac{-2+4}{-2-2}=\dfrac{2}{-4}=-\dfrac{1}{2}\)

Với n = 4 => \(A=\dfrac{4+4}{4-2}=\dfrac{8}{2}=4\)

c, \(A=\dfrac{n+4}{n-2}=\dfrac{n-2+6}{n-2}=1+\dfrac{6}{n-2}\Rightarrow n-2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

n - 21-12-23-36-6
n31405-18-4

 

a: Để phân số A có nghĩa thì n-2<>0

hay n<>2

b: Thay n=0 vào A, ta được:

\(A=\dfrac{0+4}{0-2}=-2\)

Thay n=-2 vào A, ta được:

\(A=\dfrac{-2+4}{-2-2}=\dfrac{2}{-4}=-\dfrac{1}{2}\)

Thay n=4 vào A, ta được:

\(A=\dfrac{4+4}{4-2}=\dfrac{8}{2}=4\)

c: Để A là số nguyên thì \(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

19 tháng 2 2022

Để \(B\in Z\)

\(\Rightarrow\dfrac{n+4}{n-3}\in Z\\ \Rightarrow\dfrac{n-3+7}{n-3}\in Z\Rightarrow1+\dfrac{7}{n-3}\in Z\)

Mà \(1\in Z\Rightarrow\dfrac{7}{n-3}\in Z\Rightarrow n-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng:
 

 n-3  -7  -1  1  7 
  n -4 2 4 10

Mà \(n\in N\Rightarrow n\in\left\{2;4;10\right\}\)

19 tháng 2 2022

\(B=\dfrac{n+4}{n-3}=\dfrac{n-3+7}{n-3}=1+\dfrac{7}{n-3}\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

n-31-17-7
n4210-4(loại)