Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n>0 => 3n+9n+36 chia hết cho 3 là hợp số ( loại )
Nếu n=0 => 3n+9n+36 = 1+0+36 =37 là số nguyên tố (nhận)
Vậy n=0
Trước hết, ta chứng minh rằng với mọi số n lớn hơn hoặc bằng 5, điều kiện của đề bài không thỏa mãn.
Thật vậy, với \(n\ge5\), ta có:
+ Nếu n = 5k thì n + 15 chia hết 5. Vậy n + 15 là hợp số.
+ Nếu n = 5k + 1 thì n + 9 chia hết cho 5. Vậy n + 9 là hợp số.
+ Nếu n = 5k + 2 thì n + 3 chia hết cho 5. Vậy n + 3 là hợp số.
+ Nếu n = 5k + 3 thì n + 7 chia hết cho 5. Vậy n + 7 là hợp số.
+ Nếu n = 5k + 4 thì n + 1 chia hết cho 5. Vậy n + 1 là hợp số.
Vậy n < 5.
Để n + 1, n + 3, n + 7, n + 9, n + 13 và n + 15 đều là số nguyên tố thì n phải là số chẵn. Vì nếu n là số lẻ thì các số trên là số chẵn lớn hơn 2, và là hợp số.
Vậy n = 2 hoặc n = 4.
Với n = 2, ta thấy ngay n + 7 = 2 + 7 = 9, là hợp số.
Với n = 4, ta có các số 5, 7, 11, 13, 17, 19 đều là số nguyên tố.
Vậy số cần tìm là n = 4.
Thử n đến 3 không thỏa mãn
* n=4 thì các số là các số nguyên tố
*Xét n >4 thì các số đó đều lớn hơn 5
Xét các số dư khi chia n cho 5
+ Dư 1 thì n+ 9\(⋮\)5n+9\(⋮\)5
+Dư 2 thì n+13 \(⋮\)5n+13\(⋮\)5
+ Dư 3 thì n+7 \(⋮\)5n+7\(⋮\)5
+ Dư 4 thì n+1 \(⋮\)5n+1\(⋮\)5
+ Dư 0 thì n+15\(⋮\)5n+15\(⋮\)5
Không TM trường hợp nào cả
=>n = 4 là giá trị cần tìm
n thuộc N. =>n lớn hơn hoặc bằng 0
Xét n theo hai trường hợp:
TH1:n lớn hơn 0
Mà n lớn hơn 0 thì 3n+9*n+36 chia hết cho 3
Vì 3n chia hết cho 3, 9*n chia hết cho 3, và 36 cũng chia hết cho 3
=>Nếu n lớn hơn 0 thì 3n+9*n+36 là hợp số
TH2: n=0
Nếu n=0 thì 3n+9*n+36=30+9*0+36=1+0+36=37 là số nguyên tố(tmđb)
Vậy n=0
\(\dfrac{2n+5}{n-3}=\dfrac{\left(2n-6\right)+11}{n-3}=\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\)
Để biểu thức trên là số nguyên thì \(\dfrac{11}{n-3}\) nguyên\(\Rightarrow11⋮\left(n-3\right)\)\(\Rightarrow n-3\inƯ\left(11\right)\)
Ta có bảng:
n-3 | -11 | -1 | 1 | 11 |
n | -8 | 2 | 4 | 14 |
Vậy \(n\in\left\{-8;2;4;14\right\}\)
\(\dfrac{2n+5}{n-3}=2+\dfrac{11}{n-3}\left(n\ne3\right).\)
Để \(\dfrac{2n+5}{n-3}\in Z.\Leftrightarrow n-3\inƯ\left(11\right)\) \(=\left\{1;-1;11;-11\right\}.\)
\(\Rightarrow n\in\left\{4;2;14;-8\right\}.\)
Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link bên trên nhé.
Với n≠-2,n∈Z. Để 4/n+2 có giá trị là số nguyên thì 4⋮n+2
⇒n+2 ∈ Ư(4)={1;2;4;-1;-2;-4}
Nếu n+2=1⇒n=-1(TMĐK)
Nếu n+2=2⇒n=0(TMĐK)
Nếu n+2=4⇒n=2(TMĐK)
Nếu n+2=-1⇒n=-3(TMĐK)
Nếu n+2=-2⇒n=-4(TMĐK)
Nếu n+2=-4⇒n=-6(TMĐK)
Vậy với n ∈ {-1;0;2;-3;-4;-6} thì 4/n+2 có giá trị nguyên.
n là số 4
vì 4+1=5 là số nguyên tố
4+3=7 là số nguyên tố
4+7=11 là số nguyên tố
4+9=13 là số nguyên tố
4+13=17 là số nguyên tố
4+15=19 là số nguyên tố.
tk nha
Vì: n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố. Suy ra: n phải là số chẵn (2 là số nguyên tố chẵn duy nhất)
Nếu n = 2 thì n + 13 = 15 là hợp số (loại)
Nếu n = 4 thì n + 1 = 5; n + 3 = 7; n + 9 = 11; n + 13 = 17; n + 15 = 19 đều là các số nguyên tố (nhận)
Vậy: Số tự nhiên nhỏ nhất để n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố là: n = 4
Thử n đến 3 ko thỏa mãn!
*) n=4 thì đúng.
*) Xét n>4 thì các số đó đều lớn hơn 5.
Xét số dư khi chia n cho 5:
+) Dư 1 thì n+9 ⋮ 5
+) Dư 2 thì n+13 ⋮ 5
+) Dư 3 thì n+7 ⋮ 5
+) Dư 4 thì n+1 ⋮ 5
+) Dư 0 thì n+15⋮5
Ko thỏa mãn TH nào
Vậy n=4
thử n đến 3 ko thỏa mãn
*) n=4 thì đúng
*) Xét n>4 thì các số đó đều lớn hơn 5.
+) Dư 1 thì n+9 chia hết cho 5:
+) dư 2 thì n+13 chia hết cho 5
+) dư 3 thì n+7 chia hết cho 5
+) dư 4 thì n+1 chia hết cho 5
+) dư 0 thì n+15 chia hết cho 5
Vậy n = 4