Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
1, x^3/3 + x^2/2 + x/6 = 0
<=> 2x^3 + 3x^2 + x = 0
<=> x.(2x^2+3x+1) = 0
<=> x.[(2x+2x)+(x+1)] = 0
<=> x.(x+1).(2x+1) = 0
<=> x=0 hoặc x+1=0 hoặc 2x+1=0
<=> x=0 hoặc x=-1 hoặc x=-1/2
Vậy ........
2, Có : P(x) = 3x^2+2x^2+6/6 = x.(x+1).(2x+1)/6
Ta thấy x;x+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => A = x.(x+1).(2x+1) chia hết cho 6 (1)
+, Nếu x chia hết cho 3 => A chia hết cho 3
+, Nếu x chia 3 dư 1 => 2x+1 chia hết cho 3 => A chia hết cho 3
+, Nếu x chia 3 dư 2 => x+1 chia hết cho 3 => A chia hết cho 3
Vậy A chia hết cho 3 (2)
Từ (1) và (2) => A chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
=> P(x) luôn thuộc Z với mọi x thuộc Z
Tk mk nha
\(x=\frac{a}{b};a,b>0;\left(a,b\right)=1\).
\(\frac{5}{x}=\frac{5b}{a}\inℤ\Rightarrow a\inƯ\left(5\right)=\left\{1,5\right\}\).(vì \(\left(a,b\right)=1\))
Với \(a=1\):
\(2x=\frac{2}{b}\inℤ\Rightarrow b\inƯ\left(2\right)=\left\{1,2\right\}\)
Thử lại \(x=1,x=\frac{1}{2}\)đều thỏa mãn.
Với \(a=5\):
\(2x=\frac{10}{b}\Rightarrow b\inƯ\left(10\right)=\left\{1,2,5,10\right\}\)
\(\left(a,b\right)=1\)nên \(b\in\left\{1,2\right\}\).
Thử lại \(x=5,x=\frac{5}{2}\)đều thỏa mãn.
Vậy \(x\in\left\{1,\frac{1}{2},5,\frac{5}{2}\right\}\).
2x và 5/x
2x luôn là số nguyên
Vậy để thỏa đề thì 5/x phải là số nguyên
=> 5 chia hết cho x
x thuộc ước của 5
mà x > 0
Vậy x = 1 hoặc x = 5
Để \(\dfrac{2}{x}\) là số nguyên thì \(x\in\left\{-1;1;-2;2\right\}\)
Mà x>0 nên \(x\in\left\{1,2\right\}\)