K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2018

1, x^3/3 + x^2/2 + x/6 = 0

<=> 2x^3 + 3x^2 + x = 0

<=> x.(2x^2+3x+1) = 0

<=> x.[(2x+2x)+(x+1)] = 0

<=> x.(x+1).(2x+1) = 0

<=> x=0 hoặc x+1=0 hoặc 2x+1=0

<=> x=0 hoặc x=-1 hoặc x=-1/2

Vậy ........

2, Có : P(x) = 3x^2+2x^2+6/6 = x.(x+1).(2x+1)/6

Ta thấy x;x+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => A = x.(x+1).(2x+1) chia hết cho 6 (1)

+, Nếu x chia hết cho 3 => A chia hết cho 3

+, Nếu x chia 3 dư 1 => 2x+1 chia hết cho 3 => A chia hết cho 3

+, Nếu x chia 3 dư 2 => x+1 chia hết cho 3 => A chia hết cho 3

Vậy A chia hết cho 3 (2)
Từ (1) và (2) => A chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )

=> P(x) luôn thuộc Z với mọi x thuộc Z

Tk mk nha

30 tháng 1 2018

cảm ơn nha :P