K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

1:

\(A=\dfrac{9}{x-\sqrt{x}-2}+\dfrac{2\sqrt{x}+5}{\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)

\(=\dfrac{9}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}+5}{\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)

\(=\dfrac{9+\left(2\sqrt{x}+5\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{9+2x-4\sqrt{x}+5\sqrt{x}-10-x+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

Để A là số nguyên thì \(\sqrt{x}⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2+2⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\in\left\{1;-1;2;-2\right\}\)

=>\(\sqrt{x}\in\left\{3;1;4;0\right\}\)

=>\(x\in\left\{9;1;16;0\right\}\)

2:

\(\text{Δ}=\left(-2m-3\right)^2-4m\)

\(=4m^2+12m+9-4m\)

\(=4m^2+5m+9\)

\(=\left(2m\right)^2+2\cdot2m\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{56}{16}\)

\(=\left(2m+\dfrac{5}{4}\right)^2+\dfrac{56}{16}>=\dfrac{56}{16}>0\)

=>Phương trình luôn có hai nghiệm phân biệt

\(x_1^2+x_2^2=9\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2=9\)

=>\(\left(2m+3\right)^2-2m=9\)

=>\(4m^2+12m+9-2m-9=0\)

=>4m^2+10m=0

=>2m(2m+5)=0

=>m=0 hoặc m=-5/2

22 tháng 10 2023

cảm ơn

AH
Akai Haruma
Giáo viên
10 tháng 6 2023

Lời giải:

Để $\frac{6\sqrt{x}+2}{\sqrt{x}+2}=6-\frac{10}{\sqrt{x}+2}$ là scp thì nó phải có dạng $a^2$ (với $a\in\mathbb{N}$)

$\Leftrightarrow \frac{10}{\sqrt{x}+2}=6-a^2$

Hiển nhiên $\frac{10}{\sqrt{x}+2}>0$ nên $6-a^2>0$

$\Leftrightarrow a^2<6$. Vì $a\in\mathbb{N}$ nên $a=0,1,2$

$a=0\Leftrightarrow \frac{10}{\sqrt{x}+2}=6\Leftrightarrow \sqrt{x}=\frac{-1}{3}<0$ (loại) 

$a=1\Leftrightarrow \frac{10}{\sqrt{x}+2}=5\Leftrightarrow \sqrt{x}+2=2\Leftrightarrow x=0$

$a=2\Leftrightarrow \frac{10}{\sqrt{x}+2}=2\Leftrightarrow \sqrt{x}+2=5\Leftrightarrow x=9$

12 tháng 7 2018

Đáp án B

28 tháng 9 2021

\(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\left(đk:x\ge0,x\ne1\right)\)

\(=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2.2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}=\dfrac{2}{x+\sqrt{x}+1}\)

Để A nguyên thì: \(x+\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Mà \(x+\sqrt{x}+1=\left(x+\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

\(\Rightarrow x+\sqrt{x}+1\in\left\{1;2\right\}\)

+ Với \(x+\sqrt{x}+1=1\)

\(\Leftrightarrow\sqrt[]{x}\left(\sqrt{x}+1\right)=0\)

\(\Leftrightarrow x=0\left(tm\right)\left(do.\sqrt{x}+1\ge1>0\right)\)

+ Với \(x+\sqrt{x}+1=2\)

\(\Leftrightarrow\left(x+\sqrt{x}+\dfrac{1}{4}\right)=\dfrac{5}{4}\)

\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+\dfrac{1}{2}=\dfrac{\sqrt{5}}{2}\\\sqrt{x}+\dfrac{1}{2}=-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{\sqrt{5}-1}{2}\\\sqrt{x}=-\dfrac{\sqrt{5}+1}{2}\left(VLý\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{3-\sqrt{5}}{2}\left(tm\right)\)

Vậy \(S=\left\{1;\dfrac{3-\sqrt{5}}{2}\right\}\)

31 tháng 1

Giả sử \(x^3+x^2+2025\) là số chính phương nhỏ hơn 10000. Ta có phương trình:
\(x^3+x^2+2025 =k^2(k \in N,k^2<10000 \Leftrightarrow k<100)\)
\(\Leftrightarrow \)\(2025=k^2-x^2(x+1)\)
\(\Leftrightarrow \)\(2025=(k-x\sqrt{x+1})(k+x\sqrt{x+1})\)
Mà \(k-x\sqrt{x+1} < k+x\sqrt{x+1}< 100\)(Vì \(k < 100\))
\(\Rightarrow \)\(\left[\begin{array}{} \begin{cases} k+x\sqrt{x+1}=81\\ k-x\sqrt{x+1}=25 \end{cases}\\ \begin{cases} k+x\sqrt{x+1}=75\\ k-x\sqrt{x+1}=27 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{} \begin{cases} 2k=106\\ k-x\sqrt{x+1}=25 \end{cases}\\ \begin{cases} 2k=102\\ k-x\sqrt{x+1}=27 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{} \begin{cases} k=53\\ 53-x\sqrt{x+1}=25 \end{cases}\\ \begin{cases} k=51\\ 51-x\sqrt{x+1}=27 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{} \begin{cases} k=53\\ x\sqrt{x+1}=28 \end{cases}\\ \begin{cases} k=51\\ x\sqrt{x+1}=24 \end{cases}\\ \end{array} \right.\)

\(\Leftrightarrow\)\(\left[\begin{array}{} \begin{cases} k=53\\ x^3+x^2-784=0 \end{cases}\\ \begin{cases} k=51\\ x^3+x^2-576=0 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{} \begin{cases} k=53\\ x^3+x^2-784=0(PTVN) \end{cases}\\ \begin{cases} k=51\\ x^3-8x^2+9x^2-72x+72x-576=0 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\begin{cases} k=51\\ (x-8)(x^2+9x+72)=0 \end{cases}\)
\(\Leftrightarrow\)\(\begin{cases} k=51(t/m)\\ \left[\begin{array}{} x=8(t/m)\\ (x+\frac{9}{2})^2+\frac{207}{4}=0(PTVN) \end{array} \right. \end{cases}\)
Vậy chỉ có giá trị \(x=8\) thỏa mãn yêu cầu bài toán.
P/s: Cái c/m vô nghiệm kia mình không biết làm. Chỉ biết bấm máy tính không ra nghiệm nguyên