K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

Chọn D

Cách1:

Ta có: .

Vậy

.

Đặt .

Vậy .

Ta có:. Vậy .

14 tháng 12 2019

 Đáp án B

Phương pháp:

Hàm số y = f(x) nghịch biến trên (-∞;+∞) khi và chỉ khi f'(x) ≤ 0, ∀ x ∈ (-∞;+∞), f'(x) = 0 tại hữu hạn điểm.

Cách giải:

Đề thi Học kì 1 Toán 12 có đáp án (Đề 1)

Hàm số đã cho nghịch biến trên khoảng (-∞;+∞)

8 tháng 8 2018

Chọn A

Phương pháp:

Tính y'.

Điều kiện để hàm số đã cho nghịch biến trên  - ∞ ; 1  

Cách giải:

Tập xác định 

Ta có 

Để hàm số nghịch biến trên khoảng  - ∞ ; 1  

11 tháng 5 2017

+) Điều kiện tanx ≠ m

Điều kiện cần để hàm số đồng biến trên (0; π/4) là m ∉ (0;1)

+) đạo hàm:

y ' = ( tan 2 x + 1 ) ( 2 - m ) ( tan x - m ) 2 = 2 - m cos 2 x . ( tan x - m ) 2

+) Ta thấy:

1 cos 2 x . ( tan x - m ) 2 > 0 ; ∀ m ∉ ( 0 ; 1 )   

+) Để hàm số đồng biến trên (0; π/4)

⇔ y ' > 0 m ∉ ( 0 ; 1 ) ⇔ - m + 2 > 0 m ≤ 0 ; m ≥ 1 ⇔ m ≤ 0   h o ặ c   1 ≤ m < 2

Chọn D.

26 tháng 12 2017

9 tháng 1 2017

Chọn A.

Tập xác định:D= R. Ta có:y ‘= m-3 + (2m+1).sinx

Hàm số nghịch biến trên R

 

Trường hợp 1: m= -1/ 2 ; ta có  0 ≤ 7 2   ∀ x ∈ ℝ

Vậy hàm số luôn nghịch biến trên R.

Trường hợp 2: m< -1/ 2 ; ta có

 

 

Trường hợp 3:m > -1/2 ; ta có:

Vậy  - 4 ≤ m ≤ 2 3

 

8 tháng 4 2018

Chọn B.

Tập xác định 

Có 

Hàm số nghịch bến trên mỗi khoảng của tập xác định

28 tháng 6 2018

Chọn B

Đặt ta có để hàm số nghịch biến trên khoảng thì .

Th1: .

Th2: để thì hay .

Th3: để thì hay .

 

Vậy .

31 tháng 3 2018

Chọn D