K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2021

Điều kiện: \(x\ne1\)

a) Xét phương trình: \(\frac{x^2-2mx+3m-2}{x-1}=0\Leftrightarrow x^2-2mx+3m-2=0\)\(\left(x-1\ne0\right)\)

Pt có hai nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow m^2-3m+2>0\Leftrightarrow\orbr{\begin{cases}m>2\\m< 1\end{cases}}\)

Khi đó \(\hept{\begin{cases}x_1=m-\sqrt{m^2-3m+2}\\x_2=m+\sqrt{m^2-3m+2}\end{cases}}\)

+) \(x_1,x_2\ne1\Leftrightarrow\hept{\begin{cases}m-\sqrt{m^2-3m+2}\ne1\\m+\sqrt{m^2-3m+2}\ne1\end{cases}\Leftrightarrow m\ne1}\)

+) Tiếp tuyến của đồ thị tại hai giao điểm với trục Ox vuông góc với nhau

\(\Leftrightarrow\hept{\begin{cases}y'\left(x_1\right)=-1\left(1\right)\\y'\left(x_2\right)=1\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow\frac{\left(2x_1-2m\right)\left(x_1-1\right)-\left(x_1^2-2mx_1+3m-2\right)}{\left(x_1-1\right)^2}=-1\)

\(\Leftrightarrow\frac{m-1}{\left(x_1-1\right)^2}=2\Rightarrow m-1=2\left(m-\sqrt{m^2-3m+2}-1\right)^2\)

\(\Leftrightarrow\left(m-1\right)\left[1-2\left(2m-3-2\sqrt{m^2-3m+2}\right)\right]=0\)

\(\Leftrightarrow4\sqrt{m^2-3m+2}=4m-7\Leftrightarrow\hept{\begin{cases}m\ge\frac{7}{4}\\m=\frac{17}{8}\end{cases}}\Leftrightarrow m=\frac{17}{8}\)(t/m m>2 v m<1)

Giải (2) cho ra \(m=1\)(loại). Vậy m cần tìm là \(m=\frac{17}{8}.\)

1/ tiếp tuyến của đồ thị hàm số y= x3 -3x2 +1 có hệ số góc nhỏ nhất là đường thẳng? 2/ cho hàm số y= \(\frac{2x-3}{x-2}\) có đồ thị (C). Một tiếp tuyến của (C) cắt hai tiệm cận của (C) tại hai điểm A, B và AB=\(2\sqrt{2}\). Tính hệ số góc tiếp tuyến đó. 3/ cho hàm số y= \(\frac{-x+2}{x-1}\) có đồ thị (C) và điểm A(a;1). Gọi S là tập hợp tất cả các giá trị thực của a để có đúng một...
Đọc tiếp

1/ tiếp tuyến của đồ thị hàm số y= x3 -3x2 +1 có hệ số góc nhỏ nhất là đường thẳng?

2/ cho hàm số y= \(\frac{2x-3}{x-2}\) có đồ thị (C). Một tiếp tuyến của (C) cắt hai tiệm cận của (C) tại hai điểm A, B và AB=\(2\sqrt{2}\). Tính hệ số góc tiếp tuyến đó.

3/ cho hàm số y= \(\frac{-x+2}{x-1}\) có đồ thị (C) và điểm A(a;1). Gọi S là tập hợp tất cả các giá trị thực của a để có đúng một tiếp tuyến của (C) đi qua A. Tổng giá trị tất cả phần tử của S là?

4/ cho hàm số g(x) = f2(sinx), biết f'(\(\frac{1}{2}\)) = f(\(\frac{1}{2}\)) = 2. Tính g'(\(\frac{\pi}{6}\))

5/ cho hàm số y= f(x) có đạo hàm y' = f'(x) liên tục trên R và hàm số y= g(x) với g(x)=f(4-x3). Biết rằng tập các giá trị của x để f'(x)<0 là (-4;3). Tập các giá trị của x đẻ g'(x)>0 là?

0
24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

1. Cho f(x) = x3- \(\frac{1}{2}\)x2 - 4x . Tìm x sao cho f ' (x) < 0 2. Tính đạo hàm của hàm số y = \(\sqrt{cos2x}\) 3. Cho hàm số f(x) xác định trên R bởi f(x) = \(\sqrt{x^2}\) . Giá Trị f ' (0) bằng 4. Cho hàm số y = \(\left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)^2\) . Đạo hàm của hàm số f(x) là 5. Cho hàm số f(x) xác định trên D = [0;\(+\infty\)) cho bởi f(x) = x\(\sqrt{x}\) có đạo hàm là 6. Hàm số f(x) =...
Đọc tiếp

1. Cho f(x) = x3- \(\frac{1}{2}\)x2 - 4x . Tìm x sao cho f ' (x) < 0

2. Tính đạo hàm của hàm số y = \(\sqrt{cos2x}\)

3. Cho hàm số f(x) xác định trên R bởi f(x) = \(\sqrt{x^2}\) . Giá Trị f ' (0) bằng

4. Cho hàm số y = \(\left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)^2\) . Đạo hàm của hàm số f(x) là

5. Cho hàm số f(x) xác định trên D = [0;\(+\infty\)) cho bởi f(x) = x\(\sqrt{x}\) có đạo hàm là

6. Hàm số f(x) = \(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\) xác đinh trên D = (0;+\(\infty\)) . Đạo hàm của f(x) là

7. Đạo hàm của hàm số \(y=\) \(\frac{x^2+x+3}{x^2+x+1}\) bằng biểu thức có dạng \(\frac{ax+b}{\left(x^2+x-1\right)^2}\) . Khi đó a + b bằng

8. Cho hàm số \(y=\) \(-x^3+2x^2\) có đồ thị (C) . Có bao nhiêu tiếp tuyến của đồ thị (C) song song với đường thẳng \(y=\) x

9. Cho hàm số \(y=\) \(\frac{5}{3}x^3-x^2+4\) có đồ thị (C) . Tiếp tuyến của (C) tại điểm có hoành độ x0=3 . Tính hệ số góc

10. Cho đồ thị hàm số \(y=\) \(x^3-2x^2+2x\) có đồ thị (C) . Gọi \(x_1,x_2\) là hoành độ các điểm M , N trên (C) mà tại đó tiếp tuyến của (C) vuông góc với đường thẳng \(y=-x+2019\) . Khi đó \(x_1+x_2\) bằng

0
Câu 1 : Cho hàm số f (x) = \(-x^3+3mx^2-12x+3\) với m là tham số . Số giá trị nguyên của m \(\in\left[-1;5\right]\) để f' (x) \(\le0\) với mọi x \(\in\) R A. 3 B. 4 C. 6 D. 5 Câu 2 : Cho hàm số f(x) = \(\frac{mx+10}{2x+m}\) với m là tham số thực . Số giá trị nguyên của m để f' (x) < 0 , \(\forall x\in\left(0;2\right)\) là A. 5 B. 4 C. 6 ...
Đọc tiếp

Câu 1 : Cho hàm số f (x) = \(-x^3+3mx^2-12x+3\) với m là tham số . Số giá trị nguyên của m \(\in\left[-1;5\right]\) để f' (x) \(\le0\) với mọi x \(\in\) R

A. 3 B. 4 C. 6 D. 5

Câu 2 : Cho hàm số f(x) = \(\frac{mx+10}{2x+m}\) với m là tham số thực . Số giá trị nguyên của m để f' (x) < 0 , \(\forall x\in\left(0;2\right)\)

A. 5 B. 4 C. 6 D. 3

Câu 3 : Cho hàm số \(y=\frac{2x}{x+1}\) có đồ thị (C) . Phương trình tiếp tuyến của (C) song song với đường thẳng \(\left(\Delta\right)\) : x - 2y + 1 = 0 là

A. y = x + 9 B. y = \(\frac{1}{2}x+\frac{9}{2}\) C. y = x - 9 D. y = \(\frac{1}{2}x-\frac{9}{2}\)

Câu 4 : Biết lim \(\frac{\sqrt{2n^2+1}-3n}{n+2}=\sqrt{a}-b\) . Tính a + b

A. 5 B. -3 C. -1 D. 2

Câu 5 : Tìm lim \(\frac{2x^2-\left(a+1\right)x-a^2+a}{x^2-a^2}\left(x\rightarrow a\right)\) theo a

A. \(\frac{3a+1}{2a}\) B. \(\frac{a-1}{2a}\) C. \(\frac{3a-1}{2a}\) D. \(\frac{3a-1}{2}\)

giải chi tiết từng câu giúp mình với ạ

2
NV
1 tháng 7 2020

3.

\(x-2y+1=0\Leftrightarrow y=\frac{1}{2}x+\frac{1}{2}\)

\(y'=\frac{2}{\left(x+1\right)^2}\Rightarrow\frac{2}{\left(x+1\right)^2}=\frac{1}{2}\)

\(\Rightarrow\left(x+1\right)^2=4\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-3\Rightarrow y=3\end{matrix}\right.\)

Có 2 tiếp tuyến: \(\left[{}\begin{matrix}y=\frac{1}{2}\left(x-1\right)+1\\y=\frac{1}{2}\left(x+3\right)+3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y=\frac{1}{2}x+\frac{1}{2}\left(l\right)\\y=\frac{1}{2}x+\frac{9}{2}\end{matrix}\right.\)

4.

\(\lim\limits\frac{\sqrt{2n^2+1}-3n}{n+2}=\lim\limits\frac{\sqrt{2+\frac{1}{n^2}}-3}{1+\frac{2}{n}}=\sqrt{2}-3\)

\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)

5.

\(\lim\limits_{x\rightarrow a}\frac{2\left(x^2-a^2\right)+a\left(a+1\right)-\left(a+1\right)x}{\left(x-a\right)\left(x+a\right)}=\lim\limits_{x\rightarrow a}\frac{\left(x-a\right)\left(2x+2a\right)-\left(a+1\right)\left(x-a\right)}{\left(x-a\right)\left(x+a\right)}\)

\(=\lim\limits_{x\rightarrow a}\frac{\left(x-a\right)\left(2x+a-1\right)}{\left(x-a\right)\left(x+a\right)}=\lim\limits_{x\rightarrow a}\frac{2x+a-1}{x+a}=\frac{3a-1}{2a}\)

NV
1 tháng 7 2020

1.

\(f'\left(x\right)=-3x^2+6mx-12=3\left(-x^2+2mx-4\right)=3g\left(x\right)\)

Để \(f'\left(x\right)\le0\) \(\forall x\in R\) \(\Leftrightarrow g\left(x\right)\le0;\forall x\in R\)

\(\Leftrightarrow\Delta'=m^2-4\le0\Rightarrow-2\le m\le2\)

\(\Rightarrow m=\left\{-1;0;1;2\right\}\)

2.

\(f'\left(x\right)=\frac{m^2-20}{\left(2x+m\right)^2}\)

Để \(f'\left(x\right)< 0;\forall x\in\left(0;2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-20< 0\\\left[{}\begin{matrix}m>0\\m< -4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{20}< m< \sqrt{20}\\\left[{}\begin{matrix}m>0\\m< -4\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow m=\left\{1;2;3;4\right\}\)

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

NV
12 tháng 8 2020

3.

Hàm trùng phương \(f\left(x\right)=ax^4+bx^2+c\) với \(a\ne0\) đồng biến trên \(\left(0;+\infty\right)\) khi và chỉ khi:

\(\left\{{}\begin{matrix}a>0\\b\ge0\end{matrix}\right.\) \(\Leftrightarrow m\ge0\)

Hoặc giải bt: \(y'=4x^3+2mx\ge0\) ;\(\forall x>0\)

\(\Leftrightarrow2x\left(x^2+m\right)\ge0\)

\(\Leftrightarrow x^2+m\ge0\)

\(\Leftrightarrow x^2\ge-m\)

\(\Leftrightarrow-m\le min\left(x^2\right)=0\Rightarrow m\ge0\)

NV
12 tháng 8 2020

1.

Giả sử tiếp tuyến d có 1 vtpt là \(\left(a;b\right)\) với \(a^2+b^2>0\)

\(\Rightarrow cos30^0=\frac{\sqrt{3}}{2}=\frac{\left|a-2b\right|}{\sqrt{\left(a^2+b^2\right)\left(1^2+\left(-2\right)^2\right)}}=\frac{\left|a-2b\right|}{\sqrt{5\left(a^2+b^2\right)}}\)

\(\Leftrightarrow4\left(a-2b\right)^2=15\left(a^2+b^2\right)\)

\(\Leftrightarrow11a^2+16ab-b^2=0\)

Nghiệm xấu quá nhìn muốn nản, bạn tự làm tiếp :)

2.

\(y'=cosx-2sinx+2m-5\)

Hàm số đồng biến trên TXĐ khi và chỉ khi \(y'\ge0\) ; \(\forall x\)

\(\Leftrightarrow cosx-2sinx+2m-5\ge0\) ;\(\forall x\)

\(\Leftrightarrow2m-5\ge2sinx-cosx\)

\(\Leftrightarrow2m-5\ge f\left(x\right)_{max}\) với \(f\left(x\right)=2sinx-cosx\)

Ta có: \(f\left(x\right)=2sinx-cosx=\sqrt{5}\left(\frac{2}{\sqrt{5}}sinx-\frac{1}{\sqrt{5}}cosx\right)=\sqrt{5}sin\left(x-a\right)\)

Với \(a\in\left(0;\pi\right)\) sao cho \(cosa=\frac{2}{\sqrt{5}}\)

\(\Rightarrow f\left(x\right)\le\sqrt{5}\Rightarrow2m-5\ge\sqrt{5}\Rightarrow m\ge\frac{5+\sqrt{5}}{2}\)

Bài 1:Cho đường thẳng (d): x+2y-3=0 tìm ảnh d' qua phép đối xứng tâm I(0;-1) Bài 2: Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): x+y-2=0. Viết phương trình đường thẳng d' là ảnh của d qua phép đồng dạng có được bằng cách thức hiện liên tiếp phép vị tự tâm I(-1;1) tỉ số k=\(\dfrac{1}{2}\)và phép quay tâm O góc 45 độ Bài 3: Trong mặt phẳng tọa độ Oxy cho điểm M(2;1) thực hiện liên tiếp...
Đọc tiếp

Bài 1:Cho đường thẳng (d): x+2y-3=0 tìm ảnh d' qua phép đối xứng tâm I(0;-1)

Bài 2: Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): x+y-2=0. Viết phương trình đường thẳng d' là ảnh của d qua phép đồng dạng có được bằng cách thức hiện liên tiếp phép vị tự tâm I(-1;1) tỉ số k=\(\dfrac{1}{2}\)và phép quay tâm O góc 45 độ

Bài 3: Trong mặt phẳng tọa độ Oxy cho điểm M(2;1) thực hiện liên tiếp phép đối xứng tâm O và phép tịnh tiến theo véc tơ v(2;3) biến M thành điểm nào

Bài 4: Trong mặt phẳng tọa độ Oxy cho đường tròn (C): \((x-1)^{2}\)+\((y+2)^{2}\)=4 thực hiện liên tiếp phép đối xứng trục Oy và phép tịnh tiến theo véc tơ v(2;3) biến (C) thành đường tròn nào

Bài 5: Trong mặt phẳng tọa độ Oxy cho điểm I(1;1) và đường thẳng (d): x+y-4=0 thực hiện liên tiếp phép đối xứng qua tâm I và phép tịnh tiến theo véc tơ (3;2) biến d thành đường thẳng nào

0