Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tam giác A'B'C' là ảnh của tam giác ABC qua phép biến hình trên.
(e)Phép đồng dạng có được bằng cách thực hiện liên tiếp phép đối xứng qua trục Oy và phép vị tự tâm O tỉ số k = -2
+) Qua phép đối xứng qua trục Oy biến tam giác ABC thành tam giác A 1 B 1 C 1
Do đó, tọa độ A 1 - 1 ; 1 ; B 1 0 ; 3 v à C 1 - 2 ; 4 .
+) Qua phép vị tự tâm O tỉ số k = -2 biến tam giác A 1 B 1 C 1 thành tam giác A 2 B 2 C 2
Biểu thức tọa độ :
Tương tự; B 2 0 ; - 6 v à C 2 4 ; - 8
Vậy qua phép đối xứng trục Oy và phép vị tự tâm O tỉ số k = -2, biến các điểm A, B, C lần lượt thành
A 2 2 ; - 2 ; B 2 0 ; - 6 v à C 2 4 ; - 8 .
Thực hiện phép đối xứng tâm O biến d thành d’, sau đó thực hiện phép tịnh tiến theo u → biến d’ thành đường thẳng d”.
* Qua phép đối xứng tâm O: biến điểm M(x; y) thuộc d thành điểm M’(x’; y’) thuộc d’.
Ta có: x ' = − x y ' = − y ⇔ x = − x ' y = − y ' Vì M thuộc d nên: x+ y – 2 = 0 . Suy ra:
-x’ + (- y’) – 2 = 0 hay x’+ y’ + 2= 0
Phương trình đường thẳng d’ : x + y + 2 = 0
* Qua phép đối xứng tịnh tiến theo ( 3; 2) biến điểm A(x; y) thuộc đường thẳng d’ thành điểm A’ (x’; y’) thuộc đường thẳng d”. Ta có:
A A ' → = u → ⇔ x ' − x = 3 y ' − y = 2 ⇔ x = x ' − 3 y = y ' − 2
Vì điểm A thuộc đường thẳng d’ nên: x+ y + 2 =0
Suy ra: (x’ - 3) + (y’ - 2) + 2 = 0 hay x’ + y’ - 3 = 0
Phương trình đường thẳng d” là x + y – 3 = 0
Đáp án D
Ta có: A(-1; 2) ∈ (d): 3x + y + 1 = 0.
⇒ (d’): 3x + y – 6 = 0.
b. ĐOy (A) = A1 (1 ; 2)
Lấy B(0 ; -1) ∈ d
Ảnh của B qua phép đối xứng trục Oy: ĐOy (B) = B(0; -1) (vì B ∈ Oy).
⇒ d1 = ĐOy (d) chính là đường thẳng A1B.
⇒ d1: 3x – y – 1 = 0.
c. Phép đối xứng tâm O biến A thành A2(1; -2).
d2 là ảnh của d qua phép đối xứng tâm O
⇒ d2 // d và d2 đi qua A2(1 ; -2)
⇒ (d2): 3x + y – 1 = 0.
d. Gọi M(-1; 0) và N(0; 2) lần lượt là hình chiếu của A(-1; 2) trên Ox, Oy.
Q(O;90º) biến N thành N’(-2; 0), biến A thành A’, biến M thành B(0; -1).
Vậy Q(O;90º) biến hình chữ nhật ONAM thành hình chữ nhật ON’A’B. Do đó A’(-2; -1) đi qua A và B, Q(O;90º) biến A thành A’(-2; -1) biến B thành B’(1; 0)
Vậy Q(O;90º) biến d thành d’ qua hai điểm A’, B’
Do đó phương trình d’ là :
Đáp án C
Q ( O ; 180 o ) : I → I ' (0;1) , bán kính 3
I ' ' = V O ; k ( I ' ) => I”(0;2), bán kính 6
T u → ( I " ) = I ' " 1 ; 4 , bán kính 6
Phương trình đường tròn (C”): ( x − 1 ) 2 + y − 4 2 = 36
+ Gọi (I1; R1) là ảnh của (I; 2) qua phép vị tự tâm O, tỉ số 3.
+ Gọi (I2; R2) là ảnh của (I1; R1) qua phép đối xứng trục Ox
⇒ R2 = R1 = 6.
I2 đối xứng với I1 qua Ox ⇒
⇒ I2(3; 9)
Vậy (I2; R2) chính là ảnh của (I; 2) qua phép đồng dạng trên và có phương trình: (x – 3)2 + (y – 9)2 = 36.
Phép tịnh tiến theo vecto u → ( 0 ; - 1 ) biến đường thẳng y = x thành đường thẳng y = x - 1;
Phép đối xứng trục Oy biến đường thẳng y = x - 1 thành đường thẳng y = -x - 1 hay x + y + 1 = 0
Đáp án A
a) M(-1;1) đối xứng qua trục Oy ta được N(-1;1).
Gọi M'(x;y) là ảnh của N(-1;1) qua phép tịnh tiến theo vectơ v → = ( 2 ; 0 )
b) Gọi P(x;y) là ảnh của M(1;1) qua phép tịnh tiến theo v → = ( 2 ; 0 )
P(3;1) đối xứng qua trục Oy ta được M"(-3;1)