K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

\(xy+1=x+y\)

\(\Leftrightarrow xy-x-y+1=0\)

\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\y-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\y=1\end{cases}}}\)

Vậy \(x=1;y=1\)

3 tháng 5 2018

hình như bn viết thiếu đề

3 tháng 5 2018

Ta có: \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\)

\(\Leftrightarrow\left(x^2+2+\frac{1}{x^2}\right)+\left(x^2-xy+\frac{y^2}{4}\right)+xy=2\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2=2-xy\)

\(\Rightarrow2-xy\ge0\)

\(\Rightarrow xy\le2\)

AH
Akai Haruma
Giáo viên
19 tháng 10

Lời giải:

$x^2-25=y(y+6)$
$\Leftrightarrow x^2-25=y^2+6y$

$\Leftrightarrow x^2-16=y^2+6y+9=(y+3)^2$

$\Leftrightarrow x^2-(y+3)^2=16$

$\Leftrightarrow (x-y-3)(x+y+3)=16$

Do $x,y$ nguyên nên $x-y-3, x+y+3$ cũng là số nguyên. Đến đây là dạng PT tích đơn giản rồi. 

AH
Akai Haruma
Giáo viên
19 tháng 10

Lời giải:

$x^2-25=y(y+6)$
$\Leftrightarrow x^2-25=y^2+6y$

$\Leftrightarrow x^2-16=y^2+6y+9=(y+3)^2$

$\Leftrightarrow x^2-(y+3)^2=16$

$\Leftrightarrow (x-y-3)(x+y+3)=16$

Do $x,y$ nguyên nên $x-y-3, x+y+3$ cũng là số nguyên. Đến đây là dạng PT tích đơn giản rồi. 

23 tháng 4 2021

\(x^2-2xy+y^2+3x-3y-4=0\)

\(\Leftrightarrow\left(x-y\right)^2+3\left(x-y\right)-4=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-y+3\right)-4=0\)

Thay y = 3 vào biểu thức trên ta được : 

\(x\left(x-3\right)-4=0\)

\(\Leftrightarrow x^2-3x-4=0\Leftrightarrow\left(x-4\right)\left(x+1\right)=0\Leftrightarrow x=4;x=-1\)

Vậy với y = 3 thì x = 4 ; x = -1 

23 tháng 4 2021

Thay y = 3 vào bthuc ta được :

x2 - 6x + 9 + 3x - 9 - 4 = 0

<=> x2 - 3x - 4 = 0

<=> ( x + 1 )( x - 4 ) = 0

<=> x = -1 hoặc x = 4