K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
KN
0
NC
18 tháng 3 2021
\(x^2+5y^2-4xy-5y+4=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-4y+4\right)-y=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y-2\right)^2-y=0\)
.....Làm nốt
Nếu y=0 thì pt trở thành:\(x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow x=0;x=3\)
Nếu y=1 thì pt trở thành:\(x^2-5x+4=0\)
\(\Leftrightarrow x^2-x-4x+4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow x=1;x=4\)
Nếu \(y\ge2\Rightarrow3^y⋮9\)
Do x là số tự nhiên nên x có dạng \(3k;3k+1;3k+2\) với \(k\in N\)
Với \(x=3k\) thì pt trở thành:
\(\left(3k\right)^2+5\cdot3k+7=3^y\left(KTM\right)\) vì VT không chia hết cho 3.
Với \(x=3k+1\) thì pt trở thành:
\(\left(3k+1\right)^2+5\cdot\left(3k+1\right)+7=3^y\)
\(\Leftrightarrow9k^2-9k+3=3^y\left(KTM\right)\) vì VT không chia hết cho 9.
Với \(x=3k+2\) thì pt trở thành:
\(\left(3k+2\right)^2+5\cdot\left(3k+2\right)+7=3^y\)
\(\Leftrightarrow9k^2-3k+1=3^y\left(KTM\right)\) vì VT không chia hết cho 3.
Vậy các cặp số tự nhiên \(\left(x;y\right)\) thỏa mãn là:\(\left(2;0\right);\left(3;0\right);\left(1;1\right);\left(4;1\right)\)