Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(x\left(x^2+x+1\right)=4y\left(y-1\right)\) (*)
\(\Leftrightarrow x^3+x^2+x+1=4y^2-4y+1\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=\left(2y-1\right)^2\) \(\left(1\right)\)
Gọi \(d\inƯC\left(x+1;x^2+1\right)\)với \(d\in Z\)
\(\Rightarrow\hept{\begin{cases}x+1⋮d\\x^2+1⋮d\end{cases}\Rightarrow x^2+1-x\left(x+1\right)⋮d}\)
\(\Rightarrow1-x⋮d\)
\(\Rightarrow1-x+x+1⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Mà \(\left(2y-1\right)^2\)là số chính phương lẻ nên x+1 và x2+1 cũng là số lẻ
\(\Rightarrow d=\pm1\)
\(\Rightarrow x+1\)và \(x^2+1\)nguyên tố cùng nhau
Do đó để phương trình có nghiệm thì x+1 và x2+1 cũng là số chình phương
Giả sử: + \(x^2+1=m^2\)
\(\Rightarrow m^2-x^2=1\)
\(\Rightarrow x=0\)(bạn tự tính)
+\(x+1=n^2\)
\(\Rightarrow x=0\)(bạn tự tính)
Thay x=0 vào phương trình (*)=> y=-1;0
Vậy.......
Câu 1:
a: \(\Leftrightarrow2x^2-x-5< x^2+x-6\)
\(\Leftrightarrow x^2-2x+1< 0\)
hay \(x\in\varnothing\)
b: \(\Leftrightarrow x^2-5x-x+4>0\)
\(\Leftrightarrow x^2-6x+4>0\)
\(\Leftrightarrow\left(x-3\right)^2>5\)
hay \(\left[{}\begin{matrix}x>\sqrt{5}+3\\x< -\sqrt{5}+3\end{matrix}\right.\)
2x+1.3y=36x=(4.9)x=4x.9x=22x.32x
do đó ta có:2x+1=22x<=>x+1=2x<=>2x-x=1<=>x=1
và 3y=32x<=>2x=y<=>y=2.1=2
vậy x=1;y=2