Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(3026\equiv2\left(mod3\right)\)
Do đó: \(x^2\equiv2\left(mod3\right)\)
Mặt khác số chính phương chia 3 không dư 2
Vậy không có x,y thỏa .....
xét y=0 ta có x^2+1=3026
=>x=55
xét y>0 ta có như bạn lê nhật khôi
\(2xy-3y+3x=7\)
\(\Leftrightarrow4xy-6y +6x=14\)
\(\Leftrightarrow2y\left(2x-3\right)+6x-9=5\)
\(\Leftrightarrow2y\left(2x-3\right)+3\left(2x-3\right)=5\)
\(\Leftrightarrow\left(2x-3\right)\left(2y+3\right)=5\)
Vì \(x,y\in N\)\(\Rightarrow2y+3\ge3\)\(\Rightarrow2y+3\inƯ\left(5\right)=\left\{5\right\}\)
\(\Rightarrow2y+3=5\Leftrightarrow y=1\)
\(\Rightarrow\left(2x-3\right)\left(2+3\right)=5\)
\(\Leftrightarrow2x-3=1\)
\(\Leftrightarrow x=2\)
Mình đã trả lời bạn rồi đó!
http://olm.vn/hoi-dap/question/594638.html
Xét y = 0 => x2 + 30 = 3026
=> x2 = 3025 => x = 55
Xét y > 0
Có 3y chia hết cho 3, 3026 chia 3 dư 2
=> x2 chia 3 dư 2 (loại vì x2 chia 3 chỉ dư 0 hoặc 1)
KL: x = 55, y = 0