Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a)x378y chia hết cho 8 =>78y chia hết cho 8 (vì số có 3 chữ số cuối chia hết cho 8 thì số đó chia hết cho 8)
=>y=4
=>x3784 chia hết cho 9 => (x+3+7+8+4) chia hết cho 9
=> (x+22) chia hết cho 9
=>x=5
vậy số cần tìm là 53784
1.b)3x23y chia hết cho 5 => y chia hết cho 5
=>y= 0 hoặc 5
TH1.1: nếu y=0,x là chẵn
=>3x230 chia hết cho 11=>(3+2+0)-(x+3) hoặc (x+3)-(3+2+0) chia hết cho 11 (vì tổng các chữ số hàng chẵn - tổng các chữ số hàng lẻ chia hết cho 11 thì số đó chia hết cho 11 hoặc ngược lại)
=>5-(x+3) hoặc (x+3)-5 chia hết cho 11
ta xét điều kiện (x+3)-5 chia hết cho 11 vì 5-(x+3)>11
nếu (x+3)-5=0 thì x=2(chọn)
nếu (x+3)-5=11 thì x=13(loại)
nếu (x+3)-5>11 mà chia hết cho 11 thì x >2 (> số có 1 chữ số)
vậy số cần tìm là 32230
K CHO MÌNH NHÉ !!!!!!
Giải:
a) Ta có:
\(n+8⋮n+3\)
\(\Rightarrow\left(n+3\right)+5⋮n+3\)
\(\Rightarrow5⋮n+3\)
\(\Rightarrow n+3\in\left\{1;5\right\}\) ( vì n là số tự nhiên )
+) \(n+3=1\Rightarrow n=-2\) ( loại )
+) \(n+3=5\Rightarrow n=2\) ( chọn )
Vậy n = 2
b) Ta có:
\(n+6⋮n-1\)
\(\Rightarrow\left(n-1\right)+7⋮n-1\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\in\left\{1;7\right\}\) ( vì n là số tự nhiên )
+) \(n-1=1\Rightarrow n=2\)
+) \(n-1=7\Rightarrow n=8\)
Vậy n = 2 hoặc n = 8
c) Ta có:
\(4n-5⋮2n-1\)
\(\Rightarrow\left(4n-2\right)-3⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)
\(\Rightarrow-3⋮2n-1\)
\(\Rightarrow2n-1\in\left\{1;3\right\}\) ( vì n là số tự nhiên )
+) \(2n-1=1\Rightarrow n=1\)
+) \(2n-1=3\Rightarrow n=2\)
Vậy n = 1 hoặc n = 2
a) \(n+8⋮n+3\)
\(\Leftrightarrow\left(n+3\right)+5⋮n+3\)
Vậy để n+8 chia hết cho n+3 thì: n+3 thuộc Ư(5)
Mà Ư(5)={-1;1;5;-5}
=>n+3={1;-1;5;-5}
+)n+3=1<=|>n=-2
+)n+3=-1<=>n=-4
+)n+3=5<=>n=2
+)n+3=-5<=>n=-8
Vậy n={-8;-4;-2;2}
b) n+6 chia hết cho n-1
<=> (n-1)+7 chia hết cho n-1
Vậy để n+6 chia hết cho n-1 thì : n-1 thuộc Ư(7)
Mà: Ư(7)={1;-1;7;-7}
=> n-1={-1;1;7;-7}
+) n-1=1<=>n=2
+)n-1=-1<=>n=0
+)n-1=7<=>n=8
+)n-1=-7<=>n=-6
Vậy n={-6;0;2;8}
c) 4n-5 chia hết cho 2n-1
<=> 2(2n-1)-5 chia hết cho 2n-1
Để 4n-5 chia hết cho 2n-1 thì 2n-1 thuộc Ư(5)
Mà Ư(5)={1;-1;5;-5}
=>2n-1={1;-1;5;-5}
+)2n-1=-1<=>n=0
+)2n-1=1<=>n=1
+)2n-1=5<=>n=3
+)2n-1=-5<=>n=-2
Vậy n={-2;0;1;3)
d) TT
1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6
Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60
n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)
n chia hết cho 7 => 60k + 1 chia hết cho 7
<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)
<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)
Vậy k nhỏ nhất là 5
Thế vào (*): n = 301 thỏa mãn
2. a) n = 25k - 1 chia hết cho 9
<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)
<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)
Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4
Thế vào trên được n = 99 thỏa mãn
b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21
Vậy không có n thỏa mãn
c) Đặt n = 9k
9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)
<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)
9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)
Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)
<=> a + 1 ≡ 0 (mod 4) (*)
Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn
Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D
1.
g/ 2xy chia hết cho 4 và 11.
Để 2xy chia hết cho 4 thì xy chia hết cho 4.
xy c {12 ; 16 ; 20 ; ... ; 96}
- 2xy = 212 không chia hết cho 11.
- 2xy = 216 không chia hết cho 11.
- 2xy = 220 chia hết cho 11.
Vậy, 2xy = 220.
5/
c) a38 chia hết cho 6
6 = 2 . 3
Để a38 chia hết cho 6 thì a38 chia hết cho 2 và 3.
a38 đã thoả mãn điều kiện chia hết cho 2 vì tận cùng của số đó là số 8.
Ta có: a38 = a + 3 + 8 = a + 11 => a c {1 ; 4 ; 7}
Vậy, a38 c {138 ; 438 ; 738}
1) => n thuộc Ư(4)={1,2,4}
Vậy n = {1,2,4}
2) \(\frac{6}{n+1}\)
=> n+1 thuộc Ư(6)={1,2,3,6}
Ta có bảng :
Vậy n={0,1,2,5}
3) =>n thuộc Ư(8)={1,2,4,8}
Vậy n n={1,2,4,8}
4)\(\frac{n+3}{n}=\frac{n}{n}+\frac{3}{n}=1+\frac{3}{n}\)
=> n thuộc Ư(3)={1,3}
Vậy n = {1,3}
5) \(\frac{n+6}{n+1}=\frac{n+1+5}{n+1}=\frac{n+1}{n+1}+\frac{5}{n+1}=1+\frac{5}{n+1}\)
=> n+1 thuộc Ư(5) = {1,5}
Ta có : n+1=1
n = 1-1
n=0
Và n+1=5
n=5-1
n=4
Vậy n = 4