Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)2n+5-2n-1
=>4 chia hết cho 2n-1
ước của 4 là 1 2 4
2n-1=1=>n=.....
tiếp với 2 và 4 nhé
Ta có: n+3 chia hết cho n-1
mà: n-1 chia hết cho n-1
suy ra:[(n+3)-(n-1)]chia hết cho n-1
(n+3-n+1)chia hết cho n-1
4 chia hết cho n-1
suy ra n-1 thuộc Ư(4)
Ư(4)={1;2;4}
suy ra n-1 thuộc {1;2;4}
Ta có bảng sau:
n-1 1 2 4
n 2 3 5
Vậy n=2 hoặc n=3 hoặc n=5
1) 2n+7=2(n+1)+5
để 2n+7 chia hết cho n+1 thì 5 phải chia hết cho n+1
=> n+1\(\in\) Ư(5) => n\(\in\){...............}
bạn tự tìm n vì mình chưa biết bạn có học số âm hay chưa
Từ bài 2-> 4 áp dụng như bài 1
Ta có 2n+7=2(n+1)+5
Vì 2(n+1
Do đó 2n + 7=2(n+1)+5 khi 5 chí hết cho n +1
Suy ra n+1 "thuộc tập hợp" Ư (5) = {1;5}
Lập bảng n+1 I 1 I 5
n I 0 I 4
Vậy n "thuộc tập hợp" {0;4}
= 2n - 1 + 4 : 2n - 1
= (2n - 1 : 2n -1) + 4 : 2n - 1
= 1 + ( 4 : 2n + 1)
Suy ra n = 1
\(2n+3=2n-1+4⋮\left(2n-1\right)\Leftrightarrow4⋮\left(2n-1\right)\)
mà \(n\)là số tự nhiên nên \(2n-1\inƯ\left(4\right)\)và \(2n-1\)là số lẻ
nên \(2n-1\in\left\{-1,1\right\}\Leftrightarrow n\in\left\{0,1\right\}\).
Ta có: 4n+3=2(2n+1) +1
Vì 2(2n+1) chia hết 2n+1
=>1 chia hết 2n+1
=>2n+1\(\in\)Ư(1)
Mà Ư(1)={1}
Do đó , ta có:
2n+1=1
2n =0
n=0
Vậy n=0
4n+3 chia hết cho 2n+1
=> 4n+2+1 chia hết cho 2n+1
Vì 4n+2 chia hết cho 2n+1
=> 1 chia hết cho 2n+1
=> 2n+1 thuộc Ư(1)
=> 2n+1 thuộc {1; -1}
=> 2n thuộc {0; -2}
=> n thuộc {0; -1}