Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n^3+2n^2-3=n^3-n^2+3n^2-3=n^2\left(n-1\right)+3\left(n-1\right)\left(n+1\right)\)
\(A=\left(n-1\right)\left(n^2+3n+3\right)\)
Vì A là hợp số nên \(A>0\)lại có \(n^2+3n+3\ge3>0\)nên \(n-1>0\Leftrightarrow n>1\)
Xét TH \(n=2\Rightarrow A=n^2+3n+3=13\)là SNT.
Với \(n>2\), A luôn có ít nhất 3 ước là \(1;n-1;A\)nên nó là hợp số.
Vậy để A là hợp số thì \(n>2\)
Đặt \(N=12n^2-5n-25=\left(3n-5\right)\left(4n+5\right)\)
Do n tự nhiên nên \(\left(4n+5\right)-\left(3n-5\right)=n+10>0\Rightarrow4n+5>3n-5\)
N luôn có ít nhất 2 ước số phân biệt là \(3n-5\) và \(4n+5\)
\(\Rightarrow\) N nguyên tố khi và chỉ khi: \(\left\{{}\begin{matrix}3n-5=1\\4n+5\text{ là số nguyên tố}\end{matrix}\right.\)
\(3n-5=1\Rightarrow n=2\)
Khi đó \(4n+5=13\) là số nguyên tố (thỏa mãn)
Vậy \(n=2\)
`P=n^3-n^2+n-1`
`=n^2(n-1)+(n-1)`
`=(n-1)(n^2+1)`
Vì n là stn thì p là snt khi
`n-1=1=>n=2`
Vậy n=2
\(B=\left(n+3\right)^2-\left(n-4\right)^2\)
\(=\left(n+3-n+4\right)\left(n+3+n-4\right)\)
\(=7\left(2n-1\right)\)
Dễ thấy B là số nguyên tố khi
\(2n-1=1\Leftrightarrow n=1\)
Vậy n = 1 thì B là số nguyên tố
Câu trả lời hay nhất: P=(n-2)(n^2 +n +1)
dk n>=2 nhé
Pchia hết cho n-2
n-2=p hoặc n-2=1
n=3 hoạc n=0
dk nên n=3
Tick nha:))
Với \(n=0\Rightarrow B=100\left(hs\right)\)
Với \(n\ne0\) ta có:
\(B=\left(n^2+10\right)^2-36n^2\)
\(=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)
Để B là số nguyên tố thì \(n^2-6n+10\) hoặc \(n^2+6n+10\) bằng 1.
Mà \(n\in N;n\ne0\Rightarrow n^2-6n+10< n^2+6n+10\)
\(\Rightarrow n^2-6n+10=1\Rightarrow n^2-6n+9=0\Rightarrow\left(n-3\right)^2=0\Rightarrow n=3\)
Thử n=3 vào B ta được:
\(B=\left(3^2+10\right)^2-36\cdot3^2=19^2-324=37\) là số nguyên tố (TM)
Vậy \(n=3\)