Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để\(2n+7⋮n+1\Leftrightarrow\frac{2n+7}{n+1}\in\)\(Z\)
Mà:\(\frac{2n+7}{n+1}=\frac{2n+2+5}{n+1}=\frac{2n+2}{n+1}+\frac{5}{n+1}=2+\frac{5}{n+1}\)
\(\Rightarrow\text{Đ}\text{ể}\frac{2n+7}{n+1}\in Z\rightarrow\frac{5}{n+1}\in Z\Rightarrow n+1\in U\left(5\right)\)
Ta có bảng sau:
n + 1 | 5 | -5 | 1 | -1 |
n | 4 | -6 | 0 | -2 |
Mà: n là số tự nhiên => n = {4 ; 0}
a) Ta thấy :
27 chia hết cho 3
6n = 3.2.n chia hết cho 2.n
Vậy n = 0; 1; 2; 3; 4; 5; 6; ... hay n = mọi số tự nhiên .
b) 2n + 5 chia hết cho 3n + 1
2n + 4 + 1 chia hết cho 2n + n + 1
Vì 2n + 1 chia hết cho 2n + 1 nên 4 chia hết cho n
Ư(4) = 1; 2; 4
Vậy n = 1; 2; 4
Cấm COPY
a, Tìm n thuộc Z, biết n+2 chia hết cho n-1 - Nguyễn Thủy Tiên
n + 6 chia hết cho n
Do n chia hết cho n => 6 chia hết cho n
Mà n thuộc N => \(n\in\left\{1;2;3;6\right\}\)
15 chia hết cho 2n + 1
Mà 2n + 1 là số lẻ; \(n\in N\)nên \(2n+1\ge1\)=> \(2n+1\in\left\{1;3;5;15\right\}\)
=> \(2n\in\left\{0;2;4;14\right\}\)
=> \(n\in\left\{0;1;2;7\right\}\)
n+6 chi het cho n
Do n chia het cho n =>6 chia het cho n
Ma n thuoc N=>nE{1;2;3;6}
15 chia het cho 2n+1
Mà 2n+1 là số lẻ:n E N nen 2n + 1>_ 1 => 2n +1 E { 1;3;5;15 }
=> 2n E { 0;2;4;14 }
=> n E { 0;1;2;7 }
Bài 1
n + 2 ⋮ n + 1
n + 1 + 1 ⋮ n + 1
1 ⋮ n + 1
n + 1 \(\in\) Ư(1) = {-1; 1}
n \(\in\) {-2; 0}
Vì n \(\in\) N nên n = 0
Vậy n = 0
Bài 2:
2n + 7 ⋮ n + 1
2(n + 1) + 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) {-6; -2; 0; 4}
Vì n \(\in\) N nên n \(\in\) {0; 4}
Vậy n \(\in\) {0; 4}
\(9n+39⋮n+3\Leftrightarrow9\left(n+3\right)+12⋮n+3\)
\(\Leftrightarrow12⋮n+3\)hay \(n+3\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
Tương tự với 2n + 7 chia hết n + 2
a, 9n +39 \(⋮\) n+3
Ta có : 9n+39 = 9(n+3 ) +12
mà 9(n+3 ) \(⋮\) n+3
để 9n+39 \(⋮\) n+3 thì => 12\(⋮\) n+3 hay n+3 \(\in\) Ư(12)
Ư(12) = {1;2;3;4;6;12}
Ta có bảng sau
Vây n \(\in\) {0;1;3;9}
b, 2n+7 \(⋮\) n+2
Ta có : 2n+7 = 2(n+2 ) + 3
Mà 2(n+2) \(⋮\) n+2
Để 2n+7 \(⋮\) n+2
Thì => 3\(⋮\) n+2 hay n+2 \(\in\) Ư(3)
Ư(3) = {1;3}
Ta có bảng sau
Vậy n=1