Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với: y=0 thì: \(-x^2+13x=-24\text{ nên: }x^2-13x-24=0\text{ thấy ngay phương trình này ko có nghiệm nguyên}\)
\(\text{Nếu: }y>0\text{ thì: }x^2-13x=23+11^y\text{ do đó: }\left(x-1\right)^2-11x=24+11^y\text{ do đó: }\left(x-1\right)^2\text{ chia 11 dư 2}\)
THấy ngay 1 số chia 11 dư 0;+-1 ; +-2; +-3;....;+-5 mà: 0;1;4;9;16;25 không có số nào chia 11 dư 2 nên loại nên phương trình vô nghiệm
Lời giải:
PT $\Leftrightarrow 11^y=x^2-13x-23$
Nếu $x\equiv 0\pmod 3$ thì:
$x^2-13x-23\equiv -23\equiv 1\pmod 3$
Nếu $x\equiv 1\pmod 3$ thì:
$x^2-13x-23\equiv 1-13-23\equiv 1\pmod 3$
Nếu $x\equiv 2\pmod 3$ thì:
$x^2-13x-23\equiv 1-13.2-23\equiv 0\pmod 3$
Do đó $11^y\equiv 0\pmod 3$ (vô lý) hoặc $11^y\equiv 1\pmod 3$
$\Rightarrow (-1)^y\equiv 1\pmod 3$
$\Rightarrow y$ chẵn. Đặt $y=2t$
$11^{2t}-x^2+13x+23=0$
$(2.11^{t})^2-(2x-13)^2=-261$
$(2.11^t-2x-13)(2.11^t+2x+13)=-261$
Đến đây là dạng phương trình tích cơ bản. Bạn có thể dễ dàng giải.
Huỳnh Phan Yến Như toàn nói linh tinh trả lời dễ thì lm đi
2019.\(x^2\) + y2 = 2023
Dùng phương pháp đánh giá tìm nghiệm nguyên em nhé.
Vì \(x\), y \(\in\) Z+ => \(x\); y ≥ 1
Với \(x\) = 1; y = 1 => 2019.12 + 12 = 2020 (loại)
Với \(x\) = 1; y = 2 => 2019.12 + 22 = 2023 ( thỏa mãn)
Với \(x\) > 1; y > 2 => 2019.\(x\) + y > 2019.12 + 22 = 2023
Vậy \(x\) = 1; y = 2 là nghiệm nguyên duy nhất thỏa mãn đề bài.
Kết luận: (\(x\); y) =( 1; 2)
Ta có: x.2+2.x.y=100
=> 2x(y+1)=100
=> x(y+1)=50
=> x;y+1 thuộc Ư(50)
Ư(50)={-50;-25;5;-2;-1;1;2;5;25;50}
Tự tìm
\(a,A=3+3^2+3^3+3^4+...+3^{100}\\ 3A=3^2+3^3+3^4+3^5+3^{101}\\ 3A-A=2A=3^{101}-3\\ \Rightarrow2A+3=3^{101}=3^{4.25+1}\\ \Rightarrow n=25\)
Mình sẽ làm cách này nhanh hơn cách kia nhé
\(x^2+147=y^2\)
<=>\(y^2-x^2=147\)
<=>\(\left(y-x\right)\left(y+x\right)=147\)
Vì x;y là các số tự nhiên => x+y là số tự nhiên
=>Để (y-x)(y+x)=147 thì y-x cũng phải là số tự nhiên
Vậy ta có bảng sau:
...
Bạn cũng kẻ bảng như bài trước mình làm nhưng bỏ hết các giá trị âm đi nha!
\(x^2+147=y^2=>y^2-x^2=147=>\left(y-x\right)\left(y+x\right)=147\left(1\right)\)
Vì x,y là các số tự nhiên nên từ (1) suy ra \(y-x< y+x\) và y-x,y+x là các ước tự nhiên của 147
Mà các ước tự nhiên của 147 là 1;3;7;21;49;147
Nên \(\hept{\begin{cases}y-x=1\\y+x=147\end{cases}< =>\hept{\begin{cases}y=74\\x=73\end{cases}}}\) hoặc \(\hept{\begin{cases}y-x=3\\y+x=49\end{cases}< =>\hept{\begin{cases}y=26\\x=23\end{cases}}}\) hoặc \(\hept{\begin{cases}y-x=7\\y+x=21\end{cases}< =>\hept{\begin{cases}y=14\\x=7\end{cases}}}\)
Vậy......................