Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{n+3}{n-2}=\frac{n-2}{n-2}+\frac{5}{n-2}=1+\frac{5}{n-2}\)
Để n+3/n-2 là số nguyên thì: n-2 thuộc Ư(5)={1;-1;5;-5}
=>n=3;1;7;-3
Với n=3 => n+3/n-2 nguyên dương
n=1 => n+3/n-2 nguyên âm
n=7 =>n+3/n-2 nguyên dương
n=-3 =>n+3/n-2 nguyên âm
Vậy n=3;7
\(\frac{30}{43}\)=\(\frac{1}{\frac{43}{30}}\)= \(\frac{1}{1+\frac{13}{30}}\)=\(\frac{1}{1+\frac{1}{2+\frac{4}{13}}}\)=\(\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)
=> a=1,b=2,c=3,d=4.
Suy nghĩ đi, chỗ nào ko hiểu hỏi mình, lát mình quay lại giờ mình bận.
\(\frac{a+7b}{a+5b}=\frac{29}{28}\Rightarrow\left(a+7b\right).28=\left(a+5b\right).29\)
\(\Leftrightarrow28a+196b=29a+145b\)
\(\Leftrightarrow29a-28a=196b-145b\)
\(\Leftrightarrow a=51b\)
Do đó a luôn chia hết cho 51 nên a không thể là số nguyên tố.
Vậy không tìm được số a;b thỏa mãn đề bài.
Giúp với bà con ơi. Khó quá trời lun !!!!!!!!!!!!!!!!!!!!!!!!!
goi 3 do can tim la a , b ,c ( a,b,c la so tu nhien )
the de bai ta co : 1/a +1/b+1/c la so tu nhien
vi 1/a , 1/b ,1/c <=1 vay 1/a +1/b+1/c <=3
xet cac th :
th1 : 1/a +1/b+1/c =3 => a=b=xc=1 la nghiem
th2: 1/a +1/b+1/c=2 => a*b+b*c+a*c=2*a*b*c ( 1 )
gia su a = min (a,b,c ) => b*c= max ( a*b ,b*c ,a*c )
neu a=> 2 vay 2*a*b*c => 4*b*c > a*b+b*c+a*c vay a=1 hoac 2
+) voi a=1 ( 1 ) <=> 1+1/b+1/c =2
=> 1/b+1/c = 1 => b+c =b*c => b=c = 2
+) voi a=1 (1) 1/2+1/b+1/c =2
=> 1/b+1/c = 3/2 => b=1 x=2 hoac b=2 c=1
th3: 1/a +1/b+1/c=1 => a*b+b*c+a*c=a*b*c ( 2 )
gia su a = min (a,b,c ) => b*c= max ( a*b ,b*c ,a*c )
neu a=> 4 vay a*b*c => 4*b*c > a*b+b*c+a*c vay a=1,2 hoac 3
Điều kiện: \(a;b;c;d\in|N ^* \)
Ta có: \(\frac{a}{b}=\frac{5}{3} => b=\frac{3}{5} a\) (1)
\(\frac{b}{c}=\frac{12}{21}=>c=\frac{21}{12}b=\frac{7}{4}b=\frac{7}{4}.\frac{3}{5}a=\frac{21}{20}a\) (2)
\(\frac{c}{d}=\frac{6}{11}=>d=\frac{11}{6}c=\frac{11}{6}.\frac{21}{20}a=\frac{77}{40}a\) (3)
Theo yêu cầu đề, ta chọn a = 40
Từ (1), (2), (3) suy ra \(\begin{align} \begin{cases} b&=24\\ c&=42\\ d&=77 \end{cases} \end{align} \)
Vậy 4 số tự nhiên nhỏ nhất cần tìm là: 40; 24; 42; 77
a) 2x2 + x - 18 chia hết cho x - 3
\(\Rightarrow\) (2x . x) + x - 18 chia hết cho x - 3
\(\Rightarrow\) 3x + x - 18 chia hết cho x - 3
\(\Rightarrow\) 4x - 18 chia hết cho x - 3
\(\Rightarrow\) 4x - 12 - 6 chia hết cho x - 3
\(\Rightarrow\) 4(x - 3) - 6 chia hết cho x - 3
\(\Rightarrow\) (-6) chia hết cho x - 3
\(\Rightarrow\) x - 3 \(\in\) Ư(-6) = {-1; -2; -3; -6}
\(\Rightarrow\) x \(\in\) {2; 1; 0; -3}
b) 25 - y2 = 8(x - 2013)2
25 - y . y = 8(x - 2013)(x - 2013)
25 - 2y = 8 - 2(x - 2013)
25 - 2y = 8 - (2x - 2 . 2013)
25 - 2y = 8 - (2x - 4026)
25 - 2y = 8 - 2x + 4026
25 - 2y = (8 + 4026) - 2x
25 - 2y = 4034 - 2x
a) 2x2 + x - 18 chia hết cho x - 3
\(\Rightarrow\) (2x . x) + x - 18 chia hết cho x - 3
\(\Rightarrow\) 3x + x - 18 chia hết cho x - 3
\(\Rightarrow\) 4x - 18 chia hết cho x - 3
\(\Rightarrow\) 4x - 12 - 6 chia hết cho x - 3
\(\Rightarrow\) 4(x - 3) - 6 chia hết cho x - 3
\(\Rightarrow\) (-6) chia hết cho x - 3
\(\Rightarrow\) x - 3 \(\in\) Ư(-6) = {-1; -2; -3; -6}
\(\Rightarrow\) x \(\in\) {2; 1; 0; -3}
b) 25 - y2 = 8(x - 2013)2
25 - y . y = 8(x - 2013)(x - 2013)
25 - 2y = 8 - 2(x - 2013)
25 - 2y = 8 - (2x - 2 . 2013)
25 - 2y = 8 - (2x - 4026)
25 - 2y = 8 - 2x + 4026
25 - 2y = (8 + 4026) - 2x
25 - 2y = 4034 - 2x
Giúp với bà con ơi. Khó quá trời lun !!!!!!!!!!!!!!!!!!!!!!!!!
a+b+c = abc (1)
Trường hợp 1 : a.b.c = 0 ⇒ a+b+c = 0 mà a, b, c ≥0 ⇒ a=b=c=0 ( thỏa mãn )
Trường hợp 2 a.b.c > 0 ⇒ a, b, c > 0
Vì vai trò của a, b, c bình đẳng nên có thể giả sử a≤b≤c ⇒ abc = a + b + c ≤ 3c ⇒ ab ≤ 3 ( vì c> 0 )
Mà a≤b nên a2≤ab≤3 ⇒ a = 1
Thay a = 1 vào (1) ta có b+c+1 = bc ⇔ (b-1) (c-1) = 2
Mà 0≤b−1≤c−1 nên b-1 = 1, c-1 =2 ⇒ b=2, c= 3
Vậy
(a, b, c) = (0, 0, 0) , (1, 2 , 3) , (1, 3, 2), ( 2, 1, 3) , ( 2, 3, 1 ) , ( 3, 1, 2 ) , ( 3, 2, 1 )
\(\frac{16^2-b^2+7}{a^3+78-43.2}=107\)
\(\Rightarrow16^2-b^2+7=107a^3+78.107-43.2.107\)
\(\Rightarrow256-b^2+7=107a^3+8346-9202\)
\(\Rightarrow263-b^2=107a^3-856\)
\(\Rightarrow263-b^2+856=107a^3\)
\(\Rightarrow1119=107a^3+b^2\)
Ta có:
\(107a^3<1119\)
\(\Rightarrow a^3\le10\)
Mà a là số tự nhiên nên \(a^3\in\left\{0;1;8\right\}\)
\(\Rightarrow a\in\left\{0;1;2\right\}\)
Với a=0
\(b^2=1119\)
Mà 1119 không phải số chính phương
-> Loại
Với a=1
\(b^2=1119-107.1^3=1012\)
Mà 1012 không là số chính phương
-> Loại
Với a=2
\(b^2=1119-107.8=263\)
263 không phải số chính phương
-> Loại
Vậy không có a, b thỏa mãn.