Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Bài 1
a) Để x-3/x+3 là một số nguyên thì x+3 khác 0 và x-3 ko chia hết cho x+3
=>x+3-6 ko chia hết cho x+3
=>6 ko chia hết cho x-3
=>x-3 ko thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
=> x-3 khác {1;2;3;6;-1;-2;-3;-6}
=>x khác {4;5;6;9;2;1;0;-3}
b) Để A là một số nguyên thì x-3 chia hết cho x+3
=>x+3-6 chia hết cho x-3
=>6 chia hết cho x-3
=>x-3 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
Đến đây bn tự lm phần còn lại nha
Bài 2:
Câu a lm giống như câu b bài 1 nha bn
b) Bn tham khảo nha
https://hoidap247.com/cau-hoi/346697
Tìm cái bài thứ hai ý nhưng nhìn hơi khó
\(\frac{x+1}{x-2}\)
Để \(\frac{x+1}{x-2}\inℤ\Rightarrow x+1⋮x-2\Rightarrow\left(x-2\right)+3⋮x-2\Rightarrow3⋮x-2\)
\(\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\Rightarrow x\in\left\{3;1;5;-1\right\}\)
\(\frac{12x+1}{30x+2}\)
Gọi \(n=ƯC\left(12x+1;30x+2\right)\)
\(\Rightarrow\hept{\begin{cases}12x+1⋮n\Rightarrow60x+5⋮n\\30x+2⋮n\Rightarrow60x+4⋮n\end{cases}}\)
\(\Rightarrow\left(60x+5\right)-\left(60x+4\right)⋮x\Rightarrow1⋮n\Rightarrow n=1\Rightarrow\frac{12x+1}{30x+2}\)là phân số tối giản
a) để\(\frac{5}{x+1}\)là số nguyên
<=> x + 1 E Ư(5) (x khác -1)
<=> x + 1 E {1;-1;5.-5}
x + 1 =1 => x = 2
x + 1 = -1 => x = 0
x + 1 = 5 => x = 6
x + 1 = -5 => x = -4
a) để \(\frac{5}{x+1}\)là số nguyên
< = > x + 1 E Ư ( x khác -1 )
< = > x + 1 E (1;-1;5;-5)
x + 1 = 1 = > x = 2
x + 1 = -1 = > x = 0
x + 1 = 5 = > x = 6
x + 1 = -5 = > x = 4
Đáp số :.................
Để x-9/x+2 là số nguyên thì x-9 \(⋮\)x+2
<=>x+2-11\(⋮\)x+2
Mà x+2 \(⋮\)x+2=>11\(⋮\)x+2
=>x+2EƯ(11)={-1;1;-11;11}
=>xE{-3;-1;-13;9}
Để x-9/x+2 có giá trị là một số nguyên thì ta có:
x-9 chia hết cho x+2
=> x+2-11 chia hết cho x+2
Mà x+2 chia hết cho x+2 => 11 chia hết cho x+2
=> x+2 ϵ Ư(11) = {-1;1;-11;11}
=> x ϵ { -3;-1;-13;9 }
Vì \(\frac{15}{2\cdot x+1}\)là số nguyên => 2.x + 1 = 1, 3, 5, 15
x = (1 - 1) : 2 = 0
x = (3 - 1) : 2 = 1
x = (5 - 1) : 2 = 2
x = (15 - 1) : 2 = 7
Ta có :\(A=\frac{x^2+3x+1}{x+2}=\frac{x^2+2x+x+2-1}{x+2}=\frac{x\left(x+2\right)+x+2-1}{x+2}=\frac{\left(x+1\right)\left(x+2\right)-1}{x+2}\)
\(=x+1-\frac{1}{x+2}\)
Để A nguyên => \(\frac{1}{x+2}\inℤ\Rightarrow1⋮x+2\Rightarrow x+2\inƯ\left(1\right)\)
=> \(x+2\in\left\{-1;1\right\}\)
=> x \(\in\left\{-3;-1\right\}\)
Vậy x \(\in\left\{-3;-1\right\}\)thì A nguyên
x + 3 chia hết x - 1
x + 3 - ( x - 1 ) chia hết x - 1
2 chia hết x - 1
Do đó x - 1 thuộc Ư (2) = ( 1,-1,2,-2)
x - 1 = 1 suy ra x = 2
x - 1 = -1 suy ra x = 0
x - 1 = 2 suy ra x = 3
x - 1 = -2 suy ra x = -1
Vậy x = 2, 0, 3, -1
\(\dfrac{x+3}{x-1}=\dfrac{x-1+4}{x-1}=\dfrac{x-1}{x-1}+\dfrac{4}{x-1}=1+\dfrac{4}{x-1}\)
Để đạt GT nguyên thì \(\dfrac{4}{x-1}\in Z\)
\(\Rightarrow x-1\inƯ_{\left(4\right)}=\left\{-4;-2;-1;1;2;4\right\}\\ \Rightarrow x\in\left\{-3;-1;0;2;3;5\right\}\)
\(\dfrac{x-1+4}{x-1}=1+\dfrac{4}{x-1}\Rightarrow x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
x-1 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 2 | 0 | 3 | -1 | 5 | -3 |
\(\dfrac{2x+4}{2x+1}=\dfrac{2x+1+3}{2x+1}=1+\dfrac{3}{2x+1}\Rightarrow2x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Nguyễn Huy Tú biến đổi sai
\(\frac{x+2}{2x+1}=\frac{2.\left(x+2\right)}{2.\left(2x+1\right)}=\frac{2x+4}{4x+2}\)Chứ