Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Với p = 2 thì p + 2 = 2 + 2 = 4, là hợp số, loại
+ Với p = 3 thì p + 2 = 3 + 2 = 5, p + 10 = 3 + 10 = 13, là số nguyên tố, chọn
+ Với p > 3, do p nguyên tố nên p không chia hết cho 3 => p = 3k + 1 hhoặc p = 3k + 2 (k thuộc N*)
Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3, chia hết cho 3
Mà 1 < 3 < p + 2 => p + 2 là hợp số, loại
Nếu p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12, chia hết cho 3
Mà 1 < 3 < p + 10 => p + 10 là hợp số, loại
Vậy p = 3
+ Với p = 2 thì p + 2 = 2 + 2 = 4, là hợp số, loại
+ Với p = 3 thì p + 2 = 3 + 2 = 5, p + 10 = 3 + 10 = 13, là số nguyên tố, chọn
+ Với p > 3, do p nguyên tố nên p không chia hết cho 3 => p = 3k + 1 hhoặc p = 3k + 2 (k thuộc N*)
Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3, chia hết cho 3
Mà 1 < 3 < p + 2 => p + 2 là hợp số, loại
Nếu p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12, chia hết cho 3
Mà 1 < 3 < p + 10 => p + 10 là hợp số, loại
Vậy p = 3
Vì n là số nguyên tố nên n \(\ge\) 2
Khi p=2 thì n+10= 12 => Hợp số (loại)
p=2 thì n+12= 14 => Hợp số (loại)
Khi p=3 thì n+10= 13 => Số nguyên tố (Nhận)
p=3 thì n+12= 15 => Số nguyên tố (Nhận)
Khi p>3 thì p có dạng 3k+1;3k+2
Với p=3k+1 thì n+12=3k+...
Bạn xem coi đề có sai không nha tại vì giải tới đây ko ra rồi
2) Ta có : a = 10n + 8
Vì 10n = 2n.5n nên chia hết cho 2
Mà 8 chia hết cho 2
Nên : a = 10n + 8 chia hết cho 2
Ta có : a = 10n + 8 = 10......08 [(n + 1) số 0]
=> 1 + 0 + 0 + .... + 0 + 8 (n + 1 số 0 )
= 9 chia hết cho 3;9
1) đem chia p cho 2 xảy ra 2 trường hợp về số dư : dư 0 hoặc dư 1
+) nếu \(p\) chia cho 2 dư 0 \(\Rightarrow\) \(p⋮2\) ; mà \(p\) là số nguyên tố \(\Rightarrow p=2\)
khi đó \(p+3=2+3=5\) ( thỏa mãn )
\(p+5=2+5=7\) ( thỏa mãn )
\(p+11=2+11=13\) ( thỏa mãn )
+) nếu \(p\) chia cho 2 dư 1\(\Rightarrow\) \(p=2k+1\) ( \(k\in\) N* )
khi đó \(p+11=2k+1+11=2k+12=2\left(k+6\right)⋮2\)
mà \(p+11>2\Rightarrow p+11\) là hợp số ( loại )
vậy \(p=2\)
ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc
*Xét p=2=>p+8=10 là hợp số(loại)
*Xét p=3=>p+8=11
p+10=13(thoả mãn)
*Xét p>3=>p có 2 dạng 3k+1 và 3k+2
-Với p=3k+1=>p+8=3k+1+8=3k+9=3.(k+3) là hợp số(loại)
-Với p=3k+2=>p+10=3k+2+10=3k+12=3.(k+4) là hợp số(loại)
Vậy p=3 thoả mãn đề bài.