Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(p=2k+1\)( phụ chú : vì p là số nguyên tố lẻ )
\(x=a-b-c\)
\(y=b-c-a\)
\(z=c-a-b\)
\(\Rightarrow-\left(x+y+z\right)=a+b+c\)
\(\Rightarrow B=x^{2k+1}+y^{2k+1}+z^{2k+1}-\left(x+y+z\right)^{2k+1}\)
\(=\left(x^{2k+1}+y^{2k+1}\right)-\left[\left(x+y+z\right)^{2k+1}-z^{2k+1}\right]\)
\(=\left(x+y\right)\left(x^{2k}-x^{2k-1}y+....+y^{2k}\right)-\left(x+y\right)\left[\left(x+y+z\right)^{2k}+\left(x+y+z\right)^{2k-1}z+...+z^{2k}\right]\)chia hết cho \(x+y=-2c\)
\(\Rightarrow B\text{⋮}c\)
Tiếp, lại có :
\(B=x^{2k+1}+y^{2k+1}+z^{2k+1}-\left(x+y+z\right)^{2k+1}\)
\(=\left(x^{2k+1}+z^{2k+1}\right)-\left[\left(x+y+z\right)^{2k+1}-y^{2k+1}\right]\)
\(=\left(x+z\right)\left(x^{2k}-x^{2k-1}z+...+z^{2k}\right)-\left(x+z\right)\left[\left(x+y+z\right)^{2k}+\left(x+y+z\right)^{2k-1}y+...+y^{2k}\right]\)chia hết cho \(x+z=-2b\)
\(\Rightarrow B\text{⋮}b\)
CMTT, có \(B\text{⋮}a\)
Mà \(a,b,c\)đôi một nguyên tố cùng nhau ( GT )
\(\Rightarrow B\text{⋮}abc\)
Vậy ...
Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)
Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5
Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý
Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)
Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5
Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý
Hay nhỉ , ẩn lớp mà không làm được bài lớp 8
Vừa làm được lớp 8 mà bây giờ lại không làm được
Tham khảo đâu ta :)?