Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n \(\in\)Z
4n - 5 + 1 \(⋮\)2n
4n là số chẵn nên chia hết cho 2
- 5 là số lẽ nên chia cho 2 dư 1
Vậy 4n - 5 + 1 chia hết cho 2 với mọi giá trị của n
mà 2n cũng là số chẵn
nên 4n - 5 \(⋮\)2n - 1 với mọi giá trị n
tìm n thuộc Z
a) 4n-5 chia hết cho (2n -1)
<=> 4n-2-3 chia hết (2n-1)
<=> 2(2n-1)-3 chia hết(2n-1)
=>-3 chia hết cho (2n-1)
=> 2n-1 =(-3,-1,1,3}
2n={-2,0,2,4}
n={-1,0,1,2}
b) tương tụ
8-n ước của 4={-4,-2-1,1,2,4}
n={12,10,9,7,6,4}
a, n+5 chia hết cho n+2
n+2 chia hết cho n+2
=> (n+5) - (n+2) chia hết cho 2
n+5-n-2 chia hết cho 2
3 chia hết cho 2
=>2 thuộc Ư(3)=...
b, 2n+1 chia hết cho n+5
n+5 chia hết cho n+5 => 2(n+5) chia hết cho n+5
Làm tương tự ý a
c, n2+3n+13 = n (n+3) +13
Mà n(n+3) chia hết cho n+3
=> 13 chia hết cho n+3
=> n+3 thuộc Ư(13)
=>...
mik ko bt câu 1, 2 chỉ bt câu 3 thôi:
c)
- 3n+7 chia hết cho 2n+1
=> 2.(3n+7) chia hết cho 2n+1
=> 6n+14 chia hết cho 2n+1
- 2n+1 chia hết cho 2n+1
=> 3.(2n +1) chia hết cho 2n+1
=> 6n+3 chia hết cho 2n+1
Do đó: 6n+14 - (6n+3) chia hết cho 2n+1
=> 6n+14 - 6n - 3 chia hết cho 2n+1
=> ( 6n - 6n ) - ( 14 - 3 ) chia hết cho 2n+1
=> 11 chia hết cho 2n+1
=> 2n+1 thuộc Ư (11) = { 1,11 }
Ta có bảng sau:
2n+1 | 1 | 11 |
n | 0 | 5 |
Vậy n thuộc { 0, 5 }
3)
3n+7\(⋮2n+1\)
vì \(3n+7⋮3n+7\)
=>\(2\left(3n+7\right)⋮3n+7\)
=> 6n+7\(⋮3n+7\)
vì \(2n+1⋮2n+1\)
\(\Rightarrow3\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+1⋮2n+1\)
\(\Rightarrow\left(6n+7\right)-\left(6n+1\right)⋮2n+1\)
\(\Rightarrow6⋮2n+1\)
đến đoạn này em chỉ cần lập bảng tìm n nữa là xong nhé
a) có 2n -4 chia hết cho n-1
=> (2n -2 ) -2 chia hết cho n -1
=> 2(n-1) -2 chia hết cho n-1
ta thấy 2(n-1) chia hết cho n-1
=> 2 chia hết cho n-1
=> n-1 \(\in\)Ư(2 ) = { 1: 2;-1;-2}
=> n \(\in\){ 2, 3;0;-1}
mà n \(\in\) N
=> n\(\in\) {2;3;0}
b) có 27 - 5n chia hết cho n+3
=> ( -5n -15) + 42 chia hết cho n+3
=> -5( n+3 ) +42 chia hết cho n+3
ta thấy -5 ( n+3 ) chia hết cho n+3
=> 42 chia hết cho n+3
=> n+3 \(\in\)Ư(42)={1;2;3;6;7;14;21;42}
=> n\(\in\) { -2 ; -1;1;3;4;11;18;39}
mà n \(\in\) N
=> n \(\in\) {1;3;4;11;18;39}
. .......................................................................................................................................jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
a/ a+5 chia hết n+2
a+2+3 chia hết n+2
a+2 chia hết n+2, a+2+3 chia hết n+2 nên 3 chia hết n+2 => n+2 thuộc ước của 3
n+2={1;-1;3;-3} => tự tìm n
b/ 2n+10 chia hết n+1
hay 2(n+1) +8 chia hết n+1
2(n+1)+8 chia hết n+1, 2(n+1) chia hết n+1 nên 8 chia hết n+1. tương tự tự làm
c/ n^2+4 chia hết n+1
n+1 chia hết n+1
=> (n+1).n chia hết n+1
n^2+n chia hết n+1 mà n^2+4 cũng chia hết n+1
=> n^2+n-(n^2+4) chia hết n+1
n^2+n-n^2-4 chia hết n+1
=> n-4 chia hết n+1
n+1-5 chia hết n+1. mà n+1 chia hết n+1, n+1-5 chia hết n+1 nên 5 chia hết n+1
=> n+1 thuộc ước của 5. tự làm