K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để 2n-3/3n+2 là số nguyên thì \(3\left(2n-3\right)⋮3n+2\)

\(\Leftrightarrow6n-9⋮3n+2\)

\(\Leftrightarrow3n+2\in\left\{1;-1;13;-13\right\}\)

mà n là số nguyên

nên \(n\in\left\{-1;-5\right\}\)

4 tháng 3 2022

\(\dfrac{6n-9}{3n+2}=\dfrac{2\left(3n+2\right)-13}{3n+2}=2-\dfrac{13}{3n+2}\Rightarrow3n+2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

3n+21-113-13
nloại-1loại-5

 

15 tháng 3 2023

Để 3n-1/2n+1 ∈ Z thì 3n-1⋮2n+1

Mà 2n+1 ⋮2n+1 => (3n-1)-(2n+1)⋮2n+1 => n-2⋮2n+1=> 2(n-2)⋮2n+1

=> 2n-4 ⋮2n+1

Mà 2n+1 ⋮2n+1 => (2n+1)-(2n-4) ⋮2n+1 =>5 ⋮2n+1

Mà n ∈ Z => 2n+1 ∈ Z

=> 2n+1 ∈ {1; 5; -1; -5}

=> n ∈ {0; 2; -1; -3}

Thử lại thỏa mãn.

Vậy n ∈ {0; 2; -1; -3}

24 tháng 2 2021

mình thua

18 tháng 4 2021

bo tay

16 tháng 4 2022

Mình mới học lớp 5 thôi nha

Mong bạn thông cảm

 

12 tháng 6 2022

 👌🏻

12 tháng 1 2023

loading...

bạn xem có đúng ko nha .

12 tháng 1 2023

ta có n-1 ⋮ n-1
⇒3(n-1)⋮ n-1
⇒3n-3⋮ n-1
⇒(3n+2)-(3n-3)⋮ n-1
⇒5⋮ n-1
⇒(n-1)ϵ Ư(5)

   n-1 1 5 -1 -5
    n 2 6 0 -4


vậy n={2;6;0;-4}

 

4 tháng 5 2019

a)A=\(\frac{2n+1+3n+5-4n+5}{n-3}\)

A=\(\frac{5n+6-4n+5}{n-3}\)

A=\(\frac{n+1}{n-3}\)

A=\(\frac{n-3+4}{n-3}\)

A=\(\frac{n-3}{n-3}\)\(\frac{4}{n-3}\)

A=1+\(\frac{4}{n-3}\)

Để A nguyên thì 4n-3 hay n-3Ư(4).Ta có bảng sau:

n-3124-1-2-4
n45721

-1

Vậy n{ 4;5;7;2;1;-1)

4 tháng 5 2019

Để P có giá trị nguyên 

=> 2n - 5 \(⋮\)3n - 2

=> 6n - 15 \(⋮\)3n - 2

=> 2( 3n - 2 ) - 11 \(⋮\)3n - 2

=> 11 \(⋮\)3n - 2

=> 3n - 2 \(\in\)Ư(11)

=> 3n - 2 \(\in\){ 1 ; -1 ; 11 ; -11 }

=> 3n \(\in\){ 3 ; 1 ; 13 ; -9 }

=> n \(\in\){ 1 ; 1/3 ; 13/3 ; -3 }

Mà n là số nguyên

Vậy n \(\in\){ 1 ; -3 }

a: Để A nguyên thì \(n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{2;0;4;-2\right\}\)

b: Để B nguyên thì \(3n+1\in\left\{1;4\right\}\)

hay \(n\in\left\{0;1\right\}\)

c: Để C nguyên thì \(n+3⋮2n-1\)

\(\Leftrightarrow2n+6⋮2n-1\)

\(\Leftrightarrow2n-1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{1;0;4;-3\right\}\)

3 tháng 2 2022

1. a) Gọi a là ƯCLN của 2n+5 và n+3.

- Ta có: (n+3)⋮a

=>(2n+6)⋮a

Mà (2n+5)⋮a nên [(2n+6)-(2n+5)]⋮a

=>1⋮a

=>a=1 hay a=-1.

- Vậy \(\dfrac{2n+5}{n+3}\) là phân số tối giản.

b) -Để phân số B có giá trị là số nguyên thì:

\(\left(2n+5\right)⋮\left(n+3\right)\)

=>\(\left(2n+6-1\right)⋮\left(n+3\right)\)

=>\(-1⋮\left(n+3\right)\).

=>\(n+3\inƯ\left(-1\right)\).

=>\(n+3=1\) hay \(n+3=-1\).

=>\(n=-2\) (loại) hay \(n=-4\) (loại).

- Vậy n∈∅.

3 tháng 2 2022

1. a) Gọi `(2n +5 ; n + 3 ) = d`

`=> {(2n+5 vdots d),(n+3 vdots d):}`

`=> {(2n+5 vdots d),(2(n+3) vdots d):}`

`=> {(2n+5 vdots d),(2n+6 vdots d):}`

Do đó `(2n+6) - (2n+5) vdots d`

`=> 1 vdots d`

`=> d = +-1`

Vậy `(2n+5)/(n+3)` là phân số tối giản

b) `B = (2n+5)/(n+3)` ( `n ne -3`)

`B = [2(n+3) -1]/(n+3)`

`B= [2(n+3)]/(n+3) - 1/(n+3)`

`B= 2 - 1/(n+3)`

Để B nguyên thì `1/(n+3)` có giá trị nguyên

`=> 1 vdots n+3`

`=> n+3 in Ư(1) = { 1 ; -1}`

+) Với `n+3 =1 => n = -2`(thỏa mãn điều kiện)

+) Với `n+ 3 = -1 => n= -4` (thỏa mãn điều kiện)

Vậy `n in { -2; -4}` thì `B` có giá trị nguyên

2. Gọi số học sinh giỏi kì `I` của lớp `6A` là `x` (` x in N **`)(học sinh)

Số học sinh còn lại của lớp `6A` là : `7/3 x` (học sinh)

Số học sinh giỏi của lớp `6A` cuối năm là: `x+4` (học sinh)

Cuối năm số học sinh còn lại của lớp `6A` là: `3/2 (x+4)`  (học sinh)

Vì số học sinh của lớp `6A` không đổi nên ta có :

`7/3x + x = 3/2 (x+4) + x+4`

`=> 10/3 x = 3/2 x + 6 + x + 4`

`=> 10/3 x  - 3/2 x -x = 10 `

`=> 5/6x = 10`

`=> x=12` (thỏa mãn điều kiện)

`=>` Số học sinh giỏi kì `I` của lớp `6A` là `12` học sinh

`=>` Số học sinh còn lại của lớp `6A` là : `12 . 7/3 =28` học sinh

`=>` Số học sinh của lớp `6A` là : `28 + 12 = 40` (học sinh)

Vậy lớp `6A` có `40` học sinh