K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

Để A thuộc N thì 3n+2 chia hết cho n-1

<=> (3n-3)+5 chia hết cho n-1

<=> 5 chia hết cho n - 1 vì 3n-3 = 3.(n-1) chia hết cho n-1

Đến đó bạn tự giải đi nha , nhớ phải thử lại x xem A có thuộc N ko rui kết luận nha

8 tháng 11 2017

OK bạn

25 tháng 11 2021

\(A=\dfrac{3\left(n-1\right)+5}{n-1}=3+\dfrac{5}{n-1}\in Z\\ \Leftrightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)

25 tháng 11 2021

thank

a: Để A là số nguyên thì \(4n^2-1+6⋮2n-1\)

\(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

b: Để B là số nguyên thì \(3n^2+6n-7n-14+15⋮n+2\)

\(\Leftrightarrow n+2\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)

hay \(n\in\left\{-1;-3;1;-5;3;-7;13;-17\right\}\)

AH
Akai Haruma
Giáo viên
23 tháng 2 2022

Lời giải:
a. Để A là số nguyên tố thì 1 trong 2 thừa số $x-2, x+4$ có giá trị bằng 1 và số còn lại là số nguyên tố.

Mà $x-2< x+4$ nên $x-2=1$

$\Rightarrow x=3$

Thay vào $A$ thì $A=7$ là snt (thỏa mãn) 

b. Để $A<0\Leftrightarrow (x-2)(x+4)<0$

Điều này xảy ra khi $x-2,x+4$ trái dấu. Mà $x-2< x+4$ nên:

$x-2<0< x+4$

$\Rightarrow -4< x< 2$

$x$ nguyên nên $x=-3,-2,-1,0,1$

16 tháng 10 2018

a) A= n+1/n-3

 Để A có giá trị là 1 số nguyên thì

      \(\left(n+1\right)⋮\left(n-3\right)\)

   \(\Rightarrow\left(n-3+4\right)⋮\left(n-3\right)\)

   mà \(\left(n-3\right)⋮\left(n-3\right)\)

  nên \(4⋮\left(n-3\right)\)

    => n-3 là ước nguyên của 4

    => \(\left(n-3\right)\in\left\{1;-1;2;-2;4;-4\right\}\)

Tương ứng \(n\in\left\{4;2;5;1;7;-1\right\}\)

Vậy \(n\in\left\{4;2;5;1;7;-1\right\}\)

b) B= 3n+4/n-2

    Để B có giá trị là một số nguyên thì

        \(\left(3n+4\right)⋮\left(n-2\right)\)

  \(\Rightarrow\left(3n-6+10\right)⋮\left(n-2\right)\)

  \(\Rightarrow\left[3\left(n-2\right)+10\right]⋮\left(n-2\right)\)

  mà \(3\left(n-2\right)⋮\left(n-2\right)\)

    nên \(10⋮\left(n-2\right)\)

Làm tiếp như ý a)

    

23 tháng 8 2016

\(\frac{3n}{n+1}=\frac{3n+3-3}{n+1}=\frac{3n+3}{n+1}-\)\(\frac{3}{n+1}=3-\frac{3}{n+1}\)

Để\(\frac{3n}{n+1}\in N\Rightarrow3-\frac{3}{n+1}\in N\Rightarrow\frac{3}{n+1}\in N;\frac{3}{n+1}\le3\)

\(\Rightarrow n+1=1\)hoặc \(n+1=3\)

TH1\(n+1=1\Rightarrow n=0\)Khi đó: \(\frac{3n}{n+1}=\frac{3.0}{0+1}=0\)

TH2\(n+1=3\Rightarrow n=2\) Khi đó: \(\frac{3n}{n+1}=\frac{3.2}{2+1}=\frac{6}{3}=2\)

23 tháng 8 2016

ths bạn nhiều nhea

a)Để A có giá trị nguyên thì 3n+4 chia hết cho n-1

=>3(n-1)+7 chia hết cho n-1

=> n-1 thuộc Ư(7)={1;7;-1;-7}

Phần cuối bn tự làm nha

Còn câu b làm tương tự

8 tháng 3 2020

a) Từ đề bài, ta có:

\(A=\frac{3n+4}{n-1}=\frac{3\left(n-1\right)+7}{n-1}=3+\frac{7}{n-1}\)

\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)\)

\(\Rightarrow\left(n-1\right)\in\left\{\pm1;\pm7\right\}\)

\(\Rightarrow n\in\left\{2;0;-6;8\right\}\)

b) \(\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)+5}{3n+1}=2+\frac{5}{3n+1}\)

\(\Rightarrow\left(3n+1\right)\inƯ\left(5\right)\)

\(\Rightarrow\left(3n+1\right)\in\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{\frac{-2}{3};0;-2;\frac{4}{3}\right\}\)