Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{3\left(n-1\right)+5}{n-1}=3+\dfrac{5}{n-1}\in Z\\ \Leftrightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)
a)Để A có giá trị nguyên thì 3n+4 chia hết cho n-1
=>3(n-1)+7 chia hết cho n-1
=> n-1 thuộc Ư(7)={1;7;-1;-7}
Phần cuối bn tự làm nha
Còn câu b làm tương tự
a) Từ đề bài, ta có:
\(A=\frac{3n+4}{n-1}=\frac{3\left(n-1\right)+7}{n-1}=3+\frac{7}{n-1}\)
\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)\)
\(\Rightarrow\left(n-1\right)\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{2;0;-6;8\right\}\)
b) \(\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)+5}{3n+1}=2+\frac{5}{3n+1}\)
\(\Rightarrow\left(3n+1\right)\inƯ\left(5\right)\)
\(\Rightarrow\left(3n+1\right)\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{\frac{-2}{3};0;-2;\frac{4}{3}\right\}\)
a. ĐK : \(n\ne-4\)
\(A=\frac{n+1}{n+4}=\frac{n+4-3}{n+4}=1-\frac{3}{n+4}\)
\(\Rightarrow n+4\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n + 4 | 1 | -1 | 3 | -3 |
n | -3 | -5 | -1 | -7 |
b, ĐK : \(n\ne-1\)
\(B=\frac{3n-1}{n+1}=\frac{3\left(n+1\right)-4}{n+1}=3-\frac{4}{n+1}\)
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n + 1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 0 | -2 | 1 | -3 | 3 | -5 |
c,ĐK : \(n\ne\frac{1}{2}\)
\(C=\frac{6n+5}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
\(\Rightarrow2n-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
2n - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 1 | 0 | 3/2(loại) | -1/2(loại) | 5/2(loại) | -3/2(loại) | 9/2(loại) | -7/2(loại) |
Để A là số nguyên thì 3n+5 chia hết cho n+4
=>3n+12-7 chia hết cho n+4
=>n+4 thuộc {1;-1;7;-7}
=>n thuộc {-3;-5;3;-11}
A=\(\frac{3n+9}{n-4}\)=\(\frac{3\left(n-4\right)+12+9}{n-4}=\frac{3\left(n-4\right)+21}{n-4}\)
Vì n-4 : hết cho n-4 => 3(n-4) chia hết cho n-4=> để A nguyên => 21 chia hết cho n-4
n-4 thuộc Ư(21)=> n-4 thuộc {-21;-7;-3;-1;1;3;7;21} =>n thuộc {-17;-3;1;3;5;7;25}
a: Để A là số nguyên thì n-21 chia hết cho n+10
=>n+10-31 chia hết cho n+10
=>n+10 thuộc {1;-1;31;-31}
=>n thuộc {-9;-11;21;-41}
b: Để B là số nguyên thì 3n+9 chia hết cho n-4
=>3n-12+21 chia hết cho n-4
=>n-4 thuộc {1;-1;3;-3;7;-7;21;-21}
=>n thuộc {5;3;7;1;11;-3;25;-17}
c: C nguyên
=>6n+5 chia hết cho 2n-1
=>6n-3+8 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;2;-2;4;-4;8;-8}
mà n nguyên
nên 2n-1 thuộc {1;-1}
=>n thuộc {1;0}
a) A= n+1/n-3
Để A có giá trị là 1 số nguyên thì
\(\left(n+1\right)⋮\left(n-3\right)\)
\(\Rightarrow\left(n-3+4\right)⋮\left(n-3\right)\)
mà \(\left(n-3\right)⋮\left(n-3\right)\)
nên \(4⋮\left(n-3\right)\)
=> n-3 là ước nguyên của 4
=> \(\left(n-3\right)\in\left\{1;-1;2;-2;4;-4\right\}\)
Tương ứng \(n\in\left\{4;2;5;1;7;-1\right\}\)
Vậy \(n\in\left\{4;2;5;1;7;-1\right\}\)
b) B= 3n+4/n-2
Để B có giá trị là một số nguyên thì
\(\left(3n+4\right)⋮\left(n-2\right)\)
\(\Rightarrow\left(3n-6+10\right)⋮\left(n-2\right)\)
\(\Rightarrow\left[3\left(n-2\right)+10\right]⋮\left(n-2\right)\)
mà \(3\left(n-2\right)⋮\left(n-2\right)\)
nên \(10⋮\left(n-2\right)\)
Làm tiếp như ý a)