Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................
a) A= n+1/n-3
Để A có giá trị là 1 số nguyên thì
\(\left(n+1\right)⋮\left(n-3\right)\)
\(\Rightarrow\left(n-3+4\right)⋮\left(n-3\right)\)
mà \(\left(n-3\right)⋮\left(n-3\right)\)
nên \(4⋮\left(n-3\right)\)
=> n-3 là ước nguyên của 4
=> \(\left(n-3\right)\in\left\{1;-1;2;-2;4;-4\right\}\)
Tương ứng \(n\in\left\{4;2;5;1;7;-1\right\}\)
Vậy \(n\in\left\{4;2;5;1;7;-1\right\}\)
b) B= 3n+4/n-2
Để B có giá trị là một số nguyên thì
\(\left(3n+4\right)⋮\left(n-2\right)\)
\(\Rightarrow\left(3n-6+10\right)⋮\left(n-2\right)\)
\(\Rightarrow\left[3\left(n-2\right)+10\right]⋮\left(n-2\right)\)
mà \(3\left(n-2\right)⋮\left(n-2\right)\)
nên \(10⋮\left(n-2\right)\)
Làm tiếp như ý a)
Ta có:A=\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=3+\frac{5}{n-1}\)
Để A nguyên thì \(\frac{5}{n-1}\in Z\Rightarrow n-1\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
\(\Rightarrow n\in\left\{-4,0,2,6\right\}\)
Vậy............
Ta có : A= (3n+2)/(n-1)
= [3.( n-1)+5]/(n-1)
=3+[5/(n-1)]
Để A nguyên thì 5 phải chia hết cho n-1
=> n-1 thuộc ước của 5
Ta có bảng sau
x-1 | 1 | -1 | 5 | -5 |
---|---|---|---|---|
x | 2 | 0 | 6 | -4 |
Vậy x\(\in\){ -4 ; 0 ; 2 ; 6 }
Vì A nguyên nên 3n + 2 chia hết cho n - 1 => 3n - 3 + 5 chia hết cho n - 1 => 5 chia hết cho n - 1 => n - 1 thuộc Ư(5) = { -1 ; 1 ; -5 ; 5 }
=> n thuộc { 0 ; 2 ; -; 6 }
Vậy n thuộc { 0 ; 2 ; -; 6 } thoản mãn đề bài.
A=3n+2/n-1=3+5/n-1
để a có gia trị nguyên thì 3+5/n-1 có giá trị nguyên mà 3 lầ số nguyên thi 5/n-1 có giá trị nguyên nên
n-1 thuộc ư(5)={1;-1;5;-5} nên n thuoocj tập hợp {2;0;6;-4}
a,
=>3n+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1=-5;-1;1;5
=>n=-4;0;2;6
b,3n.1=3n
=>3n+1 chia hết cho 3n
=>1 chia hết cho 3n(vô lí)
vậy không có n
ta co : 3n+2 /n -1
=(3n - 3 + 5)/ (n-1)
=3(n-1) + 5 / (n-1)
=3(n-1)/ (n-1) + 5/(n-1)
=3 + 5/(n-1)
De 3n+2 chia het cho n-1
<=>n-1 thuộc Ư(5)={+-1;+-5}
=>n={2;0;6;-4}
bạn an ơi vì sao (3n-3+5) khi bỏ dấu ngoặc ra lại bàng 3(n-1) +5 vậy?
\(A=\dfrac{3\left(n-1\right)+5}{n-1}=3+\dfrac{5}{n-1}\in Z\\ \Leftrightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)
a) A = \(\frac{3n+9}{n-4}\)= \(\frac{3\left(n-4\right)+21}{n-4}\)= 3 + \(\frac{21}{n-4}\)
Để A là số nguyên , n-4 phải là ước của 21. Ta được :
n-4 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
n | -17 | -3 | 1 | 3 | 5 | 7 | 11 | 25 |
A | 2 | 0 | -4 | -18 | 24 | 10 | 6 | 4 |
b) Biến đổi : B = 3 + \(\frac{8}{2n-1}\)
2n-1 là ước lẻ của 8 .
Đáp số :
n | 1 | 0 |
B | 11 | -5 |