K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Có 2n-4 chia hết cho n+2

=>2(n+2)8 chia hết cho n+2

=> 8 chia hết cho n+2

=>n+2 thuộc Ư(8)={1;2;4;8;-1;-2;-4;-8}

Phần cuối bạn tự làm nha

13 tháng 3 2020

Để  \(2n-4⋮n+2\)

\(\Leftrightarrow2n+4-8⋮n+2\)

\(\Leftrightarrow2\left(n+2\right)-8⋮n+2\)

Vì \(2\left(n+2\right)⋮n+2\)( vì \(n\in Z\))

\(\Rightarrow8⋮n+2\)

\(\Leftrightarrow n+2\inƯ\left(8\right)\)( vì \(n\in Z\))

\(\Leftrightarrow n+2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

\(\Leftrightarrow n\in\left\{-1;-3;0;-4;2;-6;6;-10\right\}\)

14 tháng 3 2020

Ta có:                                                      chc:chia hết cho

3-2n chc n+1

=>3-2n-2+2 chc n+1

=>3-/2n+2/+2 chc n+1

=>3-2/n+1/+2 chc n+1  <1>

Lại có:

n+1 chc n+1

=>2/n+1/ chc n+1    <2>

Từ <1>,<2>=> 3-2 chc n+1

hay 1 chc n+1

=> n+1 th Ư của 1

Mà Ư của 1 là 1 và -1

=>n+1=1                                        =>n+1=-1

n=0                                                     n=-2

Vậy n=0, n=-2

                         CHÚC BẠN HỌC TỐT

14 tháng 3 2020

\(3-2n⋮n+1\)

Ta có \(3-2n=-2-2n+5=-2\left(n+1\right)+5\)

Do \(-2\left(n+1\right)⋮n+1\Rightarrow3-2n⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Leftrightarrow n\in\left\{0;-2;4;-6\right\}\)

...

14 tháng 3 2020

\(\frac{3-2n}{n+1}\)

\(=\frac{-2n+3}{n+1}\)

\(=\frac{-2n-2+5}{n+1}\)

\(=\frac{2\left(n+1\right)+5}{n+1}\)

\(=-2+\frac{5}{n+1}\)

\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)

14 tháng 3 2020

Bài giải

Ta có: 6n + 4 \(⋮\)2n + 1   (n \(\inℤ\))

=> 6n + 4 - 3(2n + 1) \(⋮\)2n + 1

=> 1 \(⋮\)2n + 1

=> 2n + 1 \(\in\)Ư (1)

Ư (1) = {1; -1}

2n + 1 = 1 hay -1

2n       = 1 - 1 hay -1 - 1

2n       = 0 hay -2

  n       = 0 : 2 hay -2 : 2

  n       = 0 hay -1

Vậy n = 0 hay -1

6 tháng 2 2021

\(2n-4⋮2n+1\)

\(\Rightarrow2n+1-5⋮2n+1\)

=> \(5⋮2n+1\)

=> \(2n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

=> \(2n\in\left\{0;-2;4;-6\right\}\)

=> \(n\in\left\{0;-1;2;-3\right\}\) (TM)

8 tháng 8 2023

a, Ta có : \(\text{n + 5 = (n - 1)+6}\)

Vì \(\text{(n-1) ⋮ n-1}\)

Nên để \(\text{n+5 ⋮ n-1}\) `n-1`

Thì \(\text{6 ⋮ n-1}\) 

\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)

\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)

\(\text{________________________________________________________}\)

b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)

Vì \(\text{2(n+2) ⋮ n+2}\)

Nên để \(\text{2n-4 ⋮ n+2}\)

Thì \(\text{8 ⋮ n+2}\)

\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)

\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )

\(\text{_________________________________________________________________ }\)

c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)

Vì \(\text{3(2n+1) ⋮ 2n+1}\)

Nên để\(\text{ 6n+4 ⋮ 2n+1}\)

Thì \(\text{1 ⋮ 2n+1}\)

\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)

\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)

\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )

\(\text{_______________________________________}\)

Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)

Vì \(\text{-2(n+1) ⋮ n+1}\)

Nên để \(\text{3-2n ⋮ n+1}\)

Thì\(\text{ 5 ⋮ n + 1}\)

\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )

 

4 tháng 3 2020

\(-7⋮n+1\Leftrightarrow n-1\inƯ\left(-7\right)=\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow x\in\left\{2;0;8;-6\right\}\)

Vậy ..

4 tháng 3 2020

ta có:  -7 chia hết cho n-1

         =>n-1 thuộc Ư(-7)={+-1;+-7}

         Vậy n thuộc {2;0;8;-6}

DD
24 tháng 5 2021

\(7⋮\left(2n-3\right)\Leftrightarrow2n-3\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)

\(\Leftrightarrow2n\in\left\{-4,2,4,10\right\}\Leftrightarrow n\in\left\{-2,1,2,5\right\}\).

18 tháng 12 2023

(3n - 1) ⋮ (2n - 1)

⇒ 2(3n - 1) ⋮ (2n - 1)

⇒ (6n - 2) ⋮ (2n - 1)

⇒ (6n - 3 + 1) ⋮ (2n - 1)

⇒ [3(2n - 1) + 1] ⋮ (2n - 1)

⇒ 1 ⋮ (2n - 1)

⇒ 2n - 1 ∈ Ư(1) = {-1; 1}

⇒ 2n ∈ {0; 2}

⇒ n ∈ {0; 1}

18 tháng 12 2023

3n - 1 ⋮ 2n - 1 

2(3n-1) ⋮ 2n-1 

3(2n-1)+1⋮ (2n-1)

1 ⋮ (2n-1) 

(2n- 1 ) \(\in\) \(\)Ư(1) = \(\left\{-1;1\right\}\) 

2n-1 -1 1
n 0  1

Theo bảng trên ta có 

n ϵ { 0:1}