Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
a,Giả sử tích 2 số nguyên dương là 1 số chính phương
Gọi 2 số đó là \(x;x+1\left(x\inℕ^∗\right)\)
ta có:\(x\left(x+1\right)=a^2\left(a\inℤ|a\ne0\right)\)
Mà x và x+1 nguyên tố cùng nhau
\(\Rightarrow\hept{\begin{cases}x=b^2\\x+1=c^2\Rightarrow b^2+1=c^2\end{cases}}\)
\(\Rightarrow1=c^2-b^2=\left(c-b\right)\left(c+b\right)\Rightarrow c-b=c+b\Rightarrow b=0\Rightarrow x=0\)(Trái với giả thuyết)
Vậy điều giả sử là sai,do đó tích 2 số nguyên dương ko là số chính phương(DPCM)
Giả sử có số thỏa mãn đề bài
Gọi 3 số đó là\(x-1;x;x+1\left(x\inℕ|x>1\right)\)
Ta có:\(\left(x-1\right)x\left(x+1\right)=a^2\)(điều kiện như câu a)
\(\Rightarrow\left(x-1\right)\left(x+1\right)x=a^2\Rightarrow\left(x^2-1\right)x=a^2\)
Gọi d là ước chung của x và\(x^2-1\)
\(\Rightarrow\hept{\begin{cases}x^2-1⋮d\\x⋮d\Rightarrow x^2⋮d\end{cases}}\)
\(\Rightarrow x^2-\left(x^2-1\right)=1⋮d\Rightarrow d=1\)
Do đó x và\(x^2-1\)nguyên tố cùng nhau
\(\Rightarrow\hept{\begin{cases}x=b^2\\x^2-1=\left(b^2\right)^2-1=c^2\end{cases}}\)
\(\Rightarrow\left(b^2\right)^2-1=c^2\Rightarrow\left(b^2\right)^2-c^2=1\Rightarrow\left(b^2-c\right)\left(b^2+c\right)=1\Rightarrow b^2-c=b^2+c\Leftrightarrow c=0\)
\(\Rightarrow\left(b^2\right)^2-1=0\Rightarrow\left(b^2\right)^2=1\Rightarrow b^2=1\Rightarrow x=1\)(Trái với giả thuyết)
Vậy điền giả sử là sai,do đó ko có số nguyên dương thỏa mãn đề bài(ĐPCM)
3/ Ta có: A=xxyy=1000x+100x+10y+y=1100x+11y=11(100x+y)
Đề A là scp thì 100x+y =11.t2 (t thuộc Z) (1)
Ta có: 1=<x=<9 <=>100=<100x=<900(2)
0=<y=<9 (3)
Từ (2) và (3)=> 100=<100x+y=<909 (4)
Từ (1) và (4)=> 100x+y thuộc {176;275;396;539;704;891}
Mà 100x+y là số có dạng x0y(có dấu gạch trên đầu)
Do đó, x0y=704=> x=7 và y= 4
Bài 2:
a/ gọi 3 số chính phương liên tiếp đó là: (x-1)2;x2;(x+1)2
Ta có: (x-1)2+x2+(x+1)2= x2-2x+1+x2+x2+2x+1= 3x2+2
=> Tổng 3 số cp liên tiếp chia 3 dư 2
c/ Gọi 2 số lẻ đó là (2x-1)2 và (2x+1)2
(2x-1)2+(2x+1)2= 4x2-4x+1 +4x2+4x+1
= 8x2+2=2(4x2+1)
Ta có: 2 chia hết cho 2
=> 2(4x2+1) là scp thì 4x2+1 chia hết cho 2
mà 4x2+1 là số lẻ nên không chia hết cho 2
Do đó. tồng bình phương của 2 số lẻ bất kì không phải là số chính phương