Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số nghịch đảo của 5 là : 1/5
3/4 là : 4/3
7/2 là 2/7
-3/5 là -5/3
1/2 là 2/1 ( 2 )
Số nghịch đảo của:
5 là 1/5
3/4 là 4/3
7/2 là 2/7
- 3/5 là - 5/3
1/2 là 2/1
^^ học tốt!
đặt x = \(\frac{a}{b}\)trong đó a,b thuộc Z ; a,b khác 0 ( | a | , | b | ) = 1
Ta có :
\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\in Z\)
\(\Rightarrow a^2+b^2⋮ab\)( 1 )
Từ ( 1 ) suy ra b2 \(⋮\)a mà ( | a | , | b | ) = 1 nên b \(⋮\)a
cũng do ( | a | , | b | ) = 1 nên a = \(\orbr{\begin{cases}1\\-1\end{cases}}\)
CM tương tự ta được \(\orbr{\begin{cases}b=1\\b=-1\end{cases}}\)
vậy x = 1 hoặc x = -1 ( đpcm )
Gọi x là 1 số hữu tỉ âm (1)
=> x<0
=>\(\frac{1}{x}< 0\) (2)
mà x và \(\frac{1}{x}\) là 2 số nghịch đảo (3)
Từ (1); (2) và (3)
=> Số nghịch đảo của 1 số hữu tỉ âm là 1 số hữu tỉ âm (đpcm)
đặt x = \(\frac{a}{b}\)trong đó a,b \(\in\)Z ; a,b \(\ne\)0 ; ( |a| , |b| ) = 1 .
Ta có :
\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\in Z\)\(\Rightarrow\)a2 + b2 \(⋮\)ab ( 1 )
Từ ( 1 ) suy ra b2 \(⋮\)a, mà ( |a|, |b| ) = 1 nên b \(⋮\)a. Cũng do ( |a|,|b| ) = 1 nên a = 1 hoặc a = -1
Cũng chứng minh tương tự như trên, ta được b = 1 hoặc b = 01
Do đó : x = 1 hoặc x = -1
Ta có:
\(x+\frac{1}{x}=\frac{x^2+1}{x}\)
Đểc \(\frac{x^2+1}{x}\) là số nguyên \(\Rightarrow x^2+1\) phải chia hết cho x
Lại có \(x^2\) chia hết cho x
\(\Rightarrow x^2+1-x^2\)chia hết cho x
\(\Rightarrow1\) chia hết cho x
\(\Rightarrow x=1\) hoặc \(x=-1\)
a)Ta có: \(2\frac{1}{5} = \frac{{11}}{5}\)
Số nghịch đảo của \(2\frac{1}{5}\) là: \(\frac{5}{{11}}\).
b) Số nghịch đảo của \( - 13\) là: \(\frac{{ - 1}}{{13}}\)
Chú ý: Ta phải chuyển hỗn số về phân số trước khi tìm số nghịch đảo.