K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016

gọi số dạng 15x11y2013z4 là A

để số này lớn nhất có thể thì x,y phải lớn nhất có thể

=> x=y=9

ta có:

1+5+9+1+1+9+2+0+1+3+z+4=36+z

để số này lớn nhất thì z cũng phải là số có 1 chữ số lớn nhất có thể và z chia hết cho 3

=> z=9

vậy 159119201394 lớn nhất có dạng A chia hết cho 3

để số có dạng A nhỏ nhất thì x,y phải nhỏ nhất có thể

=> x=y=0

ta có:

1+5+0+1+1+0+2+0+1+3+z+4=27+z

số nhỏ nhất 27+z chia hết cho 3 là 0=> z=0

vậy số 150110201304 là số nhỏ nhất có dạng A chia hết cho 3

16 tháng 2 2017

(gt) <=> 38 + c + d chia hết cho 5
nên A = 38 + c + d phải có chữ số tận cùng là 0 hoặc 5
vì c,d là các chữ số => 0 =< c,d < 10
=> A = 38 + c + d < 58
=> A thuộc {40;45;50;55} (do A chia hết cho 5)
=> c + d = {2;7;12;17}
Q = 65c3596d4
*Điều kiện cần và đủ(thử lại)
Q tận cùng là 4 nên số hàng chục phải là số chẵn
d thuộc {2;4;6;8}
d = 2 => c thuộc {0;5}, thử c => loại
d = 4 => c thuộc {3;8}, thử c => loại
d = 6 => c thuộc {1;6}, thử c => loại
d = 8 => c thuộc {4;9}, thử c => nhận giá trị c = 9
Vậy có 1 nghiệm thỏa là : c = 9; d = 8 khi đó Q = 659359684 = 25678^2

Nguồn: Yahoo

16 tháng 2 2017

tổng các chữ số chia hết cho 5 nhé bạn k f là số đó chia hết cho 5

27 tháng 11 2016

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{bc}{a+3b+2c}\le\frac{1}{9}\left(\frac{bc}{a+b}+\frac{bc}{b+c}+\frac{c}{2}\right)\)

\(\frac{ca}{b+3c+2a}\le\frac{1}{9}\left(\frac{ca}{b+c}+\frac{ca}{c+a}+\frac{a}{2}\right)\)

\(\frac{ab}{c+3a+2b}\le\frac{1}{9}\left(\frac{ab}{c+a}+\frac{ab}{a+b}+\frac{b}{2}\right)\)

Cộng theo vế của 3 BĐT ta có:

\(VT\le\frac{1}{9}\left(\frac{a+b+c}{2}+\frac{ca+ab}{a+c}+\frac{ab+bc}{a+b}+\frac{bc+ca}{b+c}\right)\)

\(=\frac{1}{9}\left(a+b+c+\frac{a+b+c}{2}\right)=1\)

Dấu "=" khi a=b=c=2

27 tháng 11 2016

chờ tí mk lm nốt btvn hẵng

21 tháng 5 2023

Giả sử \(a\ge b\ge c\)

\(P=a+b+c=\left(a-5\right)+\left(b-4\right)+\left(c-3\right)+12\) 

\(=\sqrt{\left(a-5\right)^2}+\sqrt{\left(b-4\right)^2}+\sqrt{\left(c-3\right)^2}+12\) 

\(\ge\sqrt{\left(a-5\right)^2+\left(b-4\right)^2+\left(c-3\right)^2}+12\)

\(\ge12\)

ĐTXR \(\Leftrightarrow a=5;b=4;c=3\)

 

21 tháng 5 2023

Vậy \(min_P=12\Leftrightarrow\left(a;b;c\right)=\left(5;4;3\right)\) hoặc các hoán vị

22 tháng 10 2017

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy