K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 8 2018

Lời giải:

$2x^2+ax-4$ chia hết cho $x+4$ nghĩa là khi thực hiện phép chia thì đa thức dư bằng $0$

Theo định lý Bê-du về phép chia đa thức thì dư của $2x^2+ax-4$ khi chia cho $x+4$ là :

\(2(-4)^2+a(-4)-4=0\)

\(\Leftrightarrow 28-4a=0\Rightarrow a=7\)

26 tháng 12 2021

\(a,\Leftrightarrow2x^2+x+a=\left(x+3\right)\cdot g\left(x\right)\\ \text{Thay }x=-3\Leftrightarrow18-3+a=0\Leftrightarrow a=-15\\ b,\Leftrightarrow x^3+ax^2-4=\left(x^2+4x+4\right)\cdot f\left(x\right)=\left(x+2\right)^2\cdot f\left(x\right)\\ \text{Thay }x=-2\Leftrightarrow-8+4a-4=0\\ \Leftrightarrow4a-12=0\Leftrightarrow a=3\)

28 tháng 12 2020

Ta có : (x3 + ax2 + 5x + 3) : (x2 + 2x + 3) = x + a - 2 dư (-2a + 6)x - (3a - 9) 

Để (x3 + ax2 + 5x + 3) \(⋮\) (x2 + 2x + 3)

=> (-2a + 6)x - (3a - 9) = 0\(\forall x\)

=> \(\hept{\begin{cases}-2a+6=0\\3a-9=0\end{cases}}\Rightarrow\hept{\begin{cases}a=3\\a=3\end{cases}}\Rightarrow a=3\)

Vậy a = 3 thì (x3 + ax2 + 5x + 3) \(⋮\) (x2 + 2x + 3)

28 tháng 12 2020

Đặt f(x) = x3 + ax2 + 5x + 3

       g(x) = x2 + 2x + 3

       h(x) là thương trong phép chia f(x) cho g(x)

Ta có : f(x) bậc 3, g(x) bậc 2 => h(x) bậc 1

=> h(x) có dạng x + b

Khi đó f(x) ⋮ g(x) <=> f(x) = g(x).h(x)

<=> x3 + ax2 + 5x + 3 = ( x2 + 2x + 3 )( x + b )

<=> x3 + ax2 + 5x + 3 = x3 + bx2 + 2x2 + 2bx + 3x + 3b

<=> x3 + ax2 + 5x + 3 = x3 + ( b + 2 )x2 + ( 2b + 3 )x + 3b

Đồng nhất hệ số ta có : \(\hept{\begin{cases}a=b+2\\2b+3=5\\3b=3\end{cases}}\Rightarrow\hept{\begin{cases}a=3\\b=1\end{cases}}\)

Vậy a = 3

18 tháng 1 2019

Giả sử \(2x^2+ax-4\)chia cho x + 4 = \(Q\left(x\right)\)

\(\Rightarrow2x^2+ax-4=\left(x+4\right)Q\left(x\right)\)

Vì đẳng thức trên đúng với mọi x thuộc R

=> Với x = -4

\(\Rightarrow2\left(-4\right)^2+a\left(-4\right)-4=0\)

\(\Rightarrow32-4a-4=0\)

\(\Rightarrow28=4a\Leftrightarrow a=7\)

Các bài khác tương tự thôi 

18 tháng 1 2019

b/ Gọi thương của phép chia \(\left(x^3+ax^2+5x+3\right)\)cho \(\left(x^2+2x+3\right)\)là \(Q_{\left(x\right)}\)

=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)Q_{\left(x\right)}\)

=> Q(x) có bậc 1

=> \(Q_{\left(x\right)}=bx+c\)

=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)\left(bx+c\right)\)

=> \(x^3+ax^2+5x+3=bx^3+2bx^2+3bx+cx^2+2cx+3c\)

=> \(x^3+ax^2+5x+3=bx^3+\left(2b+c\right)x^2+\left(3b+2c\right)x+3c\)

Ta có \(\hept{\begin{cases}x^3=bx^3\\3c=3\end{cases}}\)=> \(\hept{\begin{cases}b=1\\c=1\end{cases}}\)

=> \(x^3+ax^2+5x+3=x^3+3x^2+5x+3\)

Đồng nhất hệ số => a = 3

a: \(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)

=>a+12=0

hay a=-12

b: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4a-32-4a+28⋮x+4\)

=>-4a+28=0

=>a=7

c: \(\Leftrightarrow2x^3-2x-x^2+1+\left(a+2\right)x+b-1⋮x^2-1\)

=>a+2=0 và b-1=0

=>a=-2 và b=1