K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)

=>a+12=0

hay a=-12

b: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4a-32-4a+28⋮x+4\)

=>-4a+28=0

=>a=7

c: \(\Leftrightarrow2x^3-2x-x^2+1+\left(a+2\right)x+b-1⋮x^2-1\)

=>a+2=0 và b-1=0

=>a=-2 và b=1

18 tháng 1 2019

Giả sử \(2x^2+ax-4\)chia cho x + 4 = \(Q\left(x\right)\)

\(\Rightarrow2x^2+ax-4=\left(x+4\right)Q\left(x\right)\)

Vì đẳng thức trên đúng với mọi x thuộc R

=> Với x = -4

\(\Rightarrow2\left(-4\right)^2+a\left(-4\right)-4=0\)

\(\Rightarrow32-4a-4=0\)

\(\Rightarrow28=4a\Leftrightarrow a=7\)

Các bài khác tương tự thôi 

18 tháng 1 2019

b/ Gọi thương của phép chia \(\left(x^3+ax^2+5x+3\right)\)cho \(\left(x^2+2x+3\right)\)là \(Q_{\left(x\right)}\)

=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)Q_{\left(x\right)}\)

=> Q(x) có bậc 1

=> \(Q_{\left(x\right)}=bx+c\)

=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)\left(bx+c\right)\)

=> \(x^3+ax^2+5x+3=bx^3+2bx^2+3bx+cx^2+2cx+3c\)

=> \(x^3+ax^2+5x+3=bx^3+\left(2b+c\right)x^2+\left(3b+2c\right)x+3c\)

Ta có \(\hept{\begin{cases}x^3=bx^3\\3c=3\end{cases}}\)=> \(\hept{\begin{cases}b=1\\c=1\end{cases}}\)

=> \(x^3+ax^2+5x+3=x^3+3x^2+5x+3\)

Đồng nhất hệ số => a = 3

30 tháng 11 2017

Gọi thương của phép chia 2x3 - x2 + ax + b cho x2 - 1 là Q(x)

Ta có:  2x3 - x2 + ax + b = (x2 - 1)Q(x)

    \(\Leftrightarrow\)2x3 - x2 + ax + b = (x - 1)(x + 1)Q(x)

Vì đẳng thức trên luôn đúng với mọi x nên lần lượt cho x = 1; x = -1 ta đc:

\(\hept{\begin{cases}2-1+a+b=0\\-2-1-a+b=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=-2\\b=1\end{cases}}\)

Vậy a = -2; b = 1 thì 2x3 - x2 + ax + b chia hết cho x2 - 1

18 tháng 9 2017

Thực hiện phép chia đa thức A = x4 + x3 + ax2 + (a + b)x + 2b + 1 cho đa thức B = x3 + ax + b ta được kết quả b + 1

Để đa thức A chia hết cho đa thức B thì b + 1 = 0

=> b = -1

=> x4 + x3 + ax2 + (a + b)x + 2b + 1 = 0

=> x4 + x3 + ax2 - ax - 2 + 1 = 0

=> x4 + x3 + ax2 - ax - 1 = 0

=> x3 ( x + 1 ) - ax ( x + 1 ) - 1 = 0

=> ( x3 - ax ) ( x + 1 ) - 1 = 0

=> ( x3 - ax ) ( x + 1 ) = 1

=> TH1: \(\left\{{}\begin{matrix}x^3-ax=-1\\x+1=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^3-ax=-1\\x=-2\end{matrix}\right.\)

\(\Rightarrow2a=-9\Rightarrow a=-4,5\)

=> TH2: \(\left\{{}\begin{matrix}x^3-ax=1\\x+1=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^3-ax=1\\x=0\end{matrix}\right.\)

\(\Rightarrow a\in\varnothing\)

Vậy a = -4,5 và b = -1

14 tháng 10 2020

x4 + ax + b\(⋮\)x2 - 4

<=> x4 + ax + b\(⋮\)( x - 2 ) ( x + 2 )

<=>\(\hept{\begin{cases}x^4+ax+b⋮x-2\\x^4+ax+b⋮x+2\end{cases}}\)

Đặt f ( x ) = x4 + ax + b

Theo định lý Bezout về phép chia đa thức, số dư của f ( x ) = x4 + ax + b cho x - 2 ; x + 2 lần lượt là f ( 2 ) ; f ( - 2 )

Để phép chia là chia hết thì\(\hept{\begin{cases}f\left(2\right)=16+2a+b=0\\f\left(-2\right)=-16-2a+b=0\end{cases}}\)

<=>\(\hept{\begin{cases}2a+b=-16\left(1\right)\\-2a+b=16\left(2\right)\end{cases}}\)

Lấy ( 1 ) - ( 2 ) ta được : 4a = 0 <=> a = 0

Thay a = 0 vào ( 1 ) ta được : 0 + b = - 16 <=> b = - 16

Vậy \(\hept{\begin{cases}a=0\\b=-16\end{cases}}\)

14 tháng 10 2020

bạn ơi định lý bezout là gì vậy

30 tháng 8 2019

x^4+ax^2+b x^2-4 x^2+(a+4) x^4-4x^2 - (a+4)x^2+b (a+4)x^2-4(a+4) - b+4(a+4)

Để \(x^4+ax^2+b\)chia hết cho \(x^2-4\)

\(\Leftrightarrow\hept{\begin{cases}b=0\\a+4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}b=0\\a=-4\end{cases}}\)

Vậy ...