Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt : \(\hept{\begin{cases}a=\frac{3-\sqrt{37}}{2}\\b=\frac{3+\sqrt{37}}{2}\end{cases}\Rightarrow\hept{\begin{cases}a+b=3\\ab=7\end{cases}\Rightarrow}a,b}\)là nghiệm của PT : \(x^2-3x-7=0\)
Ta cần chứng minh : \(\left(\frac{3-\sqrt{37}}{2}\right)^n+\left(\frac{3+\sqrt{37}}{2}\right)^n=a^n+b^n\in Z\)( * )
Thật vậy :
\(+n=1\)( * ) đúng
Giả sử * đúng vs n = k nghĩa là : \(a^k+b^k\in Z\)
Vậy ta cần CM : \(a^{k+1}+b^{k+1}\in Z\)
Do \(a^{k+1}+b^{k+1}=\left(a^k+b^k\right)\left(a+b\right)-ab\left(a^{k-1}+b^{k-1}\right)\)
Mà \(\hept{\begin{cases}a^k+b^k\in Z\\a^{k-1}+b^{k-1}\in Z\\ab\in Z\end{cases}}\Rightarrow a^{k+1}+b^{k+1}\in Z\)
Vậy * đúng với mọi n nguyên dương
ĐỀ THIẾU số mũ 2010 kìa
Đặt \(a=\frac{3-\sqrt{37}}{2},b=\frac{3+\sqrt{37}}{2}\)
Có \(\hept{\begin{cases}ab=-14\in Z\\a+b=3\in Z\end{cases}}\)
ta đi c/m bổ đề vs a+b nguyên, ab nguyên thì a^n+b^n nguyên,
c/m:Có \(a^n+b^n=\left(a+b\right)^n-\text{ C1n a^(n-1)b + C2n a^(n – 2)b^2 + … + Cnn – 1 ab^(n – 1) }\)
Do a+b nguyên , ab nguyên nên a^n+b^n nguyên
áp dụng bài toán trên với n=2010 => dpcm
với Cnn là tổ hợp châp n của n với n chyaj từ 1 đến n
2)
a)Thay m = 2 vào hệ, ta được :
HPT :\(\hept{\begin{cases}2x+4y=2+1\\x+\left(2+1\right)y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+4y=3\left(^∗\right)\\x+3y=2\left(^∗^∗\right)\end{cases}}\)
Lấy (*) trừ (**), ta được :
\(2x+4y-x-3y=3-2\)
\(\Leftrightarrow x+y=1\)(***)
Lấy (**) trừ (***), ta được :
\(\Leftrightarrow x+3y-x-y=2-1\)
\(\Leftrightarrow2y=1\)
\(\Leftrightarrow y=\frac{1}{2}\)
\(\Leftrightarrow x=1-\frac{1}{2}=\frac{1}{2}\)
Vậy với \(m=2\Leftrightarrow\left(x;y\right)\in\left\{\frac{1}{2};\frac{1}{2}\right\}\)
b) Thay \(\left(x;y\right)=\left(2;-1\right)\)vào hệ, ta được :
HPT :\(\hept{\begin{cases}2m-2m=m+1\\2-\left(m+1\right)=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m+1=0\\m+1=0\end{cases}}\)
\(\Leftrightarrow m=-1\)
Vậy với \(\left(x,y\right)=\left(2;-1\right)\Leftrightarrow m=-1\)
\(\left(5+2\sqrt{3}\right)\cdot\sqrt{37-20\sqrt{3}}\\ =\left(5+2\sqrt{3}\right)\cdot\sqrt{25-2\cdot10\sqrt{3}+12}\\ =\left(5+2\sqrt{3}\right)\cdot\sqrt{5^2-2\cdot5\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2}\\ =\left(5+2\sqrt{3}\right)\cdot\sqrt{\left(5-2\sqrt{3}\right)^2}\\ =\left(5+2\sqrt{3}\right)\left(5-2\sqrt{3}\right)\\ =5^2-\left(2\sqrt{3}\right)^2\\ =25-12=13\)
\(A=x^{37}+y^{37}\)
\(x.y=1\)
\(x+y=4\)
\(x^2+y^2=\left(x+y\right)^2-2xy=14\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=4^3-3.4=52\)
tính đến \(x^{18}+y^{18}=m\) và \(x^{19}+y^{19}=n\)=> A chia 2053 dư 5
làm hộ mình đi, mình cần gấp