Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Ta có 2009^2008 = (2009^2)^1004 = (.....1)^1004 = .....1
Vậy chũa số tận cùng của 2009^2008 là chữ số 1
52005 + 52006 + 52007
= 52005.1 + 52005.5 + 52005.52
= 52005.(1 + 5 + 52)
= 52005.31 ⋮ 31
=> số dư trong phép chia này là 0
bạn ơi mk hỏi là 5^2005 + 5^2006 +2007 chứ ko phải 5^2005 + 5^2006 + 5^2007
mik tính A trước nhé
\(A=1-2+2^2-...-2^{2007}+2^{2008}\)
\(2.A=2-2^2+2^3-...-2^{2008}+2^{2009}\)
\(2.A-A=\left(2-2^2+2^3-..-2^{2008}+2^{2009}\right)\)\(-\left(1-2+2^2-...-2^{2007}+2^{2008}\right)\)
\(A=1-2^{2009}\)
S-P= (1 - 1/2 + 1/3 - 1/4 +...+ 1/2011 - 1/2012 + 1/2013) - ( 1/1007 + 1/1008 +...+ 1/2012 + 1/2013 )
S-P= (1- 1/2 + ... + 1/1005 - 1/1006) - 2.(1/1008 + 1/1010 + 1/1012 +...+ 1/2012)
S-P= 1+1/2+1/3+...+1/1006 - 2.( 1/2 + 1/4 + 1/6 +...+ 1/2012)
S-P= 1 + 1/2 + 1/3 +...+ 1/1006 - ( 1+ 1/2 + 1/3 +...+ 1/1006 )
S-P= 0
⇒ (S-P)^2013 = 0