Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực hiện phép chia đa thức \(f\left(x\right)\) cho \(g\left(x\right)\) ta được
\(x^4-9x^3+21x^2+x+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+a+30\)
Do đó dư của phép chia \(f\left(x\right)\) cho \(g\left(x\right)\) là \(a+30\).
a) Với \(a=-100\) dư của phép chia đa thức \(f\left(x\right)\) và \(g\left(x\right)\) là \(-100+30=-70\).
b) Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(a+30=0\Leftrightarrow a=-30\).
Ta có:
4420 = (442)10 = 193610
Vì 1936 chia 15 dư 1 mũ lên bao nhiêu vẫn chia 15 dư 1
=> 193610 chia 15 dư 1
=> 4420 chia 15 dư 1
Gọi hai số lần lượt là a, b.
Theo bài ra ta có:
\(\frac{a}{9}-\frac{b}{6}=3\)
=>\(\frac{2a}{18}-\frac{3b}{18}=3\)
=>\(\frac{2a-3b}{18}=3\)
=> 2a - 3b = 18 x 3 = 54(**)
Lại có : \(\frac{a}{b}=\frac{3}{5}\)
=> \(a=\frac{3b}{5}\)( *)
Thay (*) vào (**) ta được:
\(2\frac{3b}{5}-3b=54\)
=>\(\frac{6b}{5}-3b=54\)
=>\(\frac{6b}{5}-\frac{15b}{5}=54\)
=> \(\frac{-9b}{5}=54\)
=> \(-9b=54\cdot5=270
\)
=> b = 270 : (-9) = -30
=> \(a=\frac{3b}{5}=\frac{3.\left(-30\right)}{5}=\frac{-90}{5}=-18\)
Vậy hai số là -30 và -18
Tú mà không làm được câu này á :))
( x - 6 )( x - 7 )( x - 8 )( x - 9 ) - 8
= [ ( x - 6 )( x - 9 ) ][ ( x - 7 )( x - 8 ) ] - 8
= ( x2 - 15x + 54 )( x2 - 15x + 56 ) - 8 (*)
Đặt t = x2 - 15x + 54
(*) <=> t( t + 2 ) - 8
= t2 + 2t - 8
= ( t - 2 )( t + 4 )
= ( x2 - 15x + 52 )( x2 - 15x + 58 )
=> [ ( x - 6 )( x - 7 )( x - 8 )( x - 9 ) - 8 ] : ( x2 - 15x + 100 )
= ( x2 - 15x + 52 )( x2 - 15x + 58 ) : ( x2 - 15x + 100 )
Đặt y = x2 - 15x + 100
Ta có được phép chia ( y - 48 )( y - 42 ) : y
= y2 - 90y + 2016 : y
= [ ( x2 - 15x + 100 )2 - 90( x2 - 15x + 100 ) + 2016 ] : ( x2 - 15x + 100 )
Đến đây thì quá dễ rồi :)) dư 2016 nhá
tém lại chút đi
Dễ thấy \(100^{80}⋮50\) ,đặt \(100^{80}=50t\) với t là số chẵn
Ta có:\(302\equiv52\)(mod 125)\(\Rightarrow302^5\equiv52^5=26^5.2^5=26^5.32\equiv32\)(mod 125)
\(\Rightarrow302^{10}\equiv32^2\equiv24\)(mod 125) \(\Rightarrow302^{50}\equiv24^5\equiv-1\)(mod 125)
Khi đó:\(302^{100^{80}}=302^{50t}=\left(302^{50}\right)^t\equiv\left(-1\right)^t=1\)(mod 125) do t là số chẵn
Tớ nhớ không nhầm thì hình như số dư là 7.