Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó là ab. (0<a; b <10). Ta có:
1/ Gấp 7 lần: <=> ab=7(a+b) <=> 10a+b=7(a+b) <=> 10a+b=7a+7b
<=> 3a=6b => a=2b => b=1; 2; 3; 4 và a=2; 4; 6; 8
Các số cần tìm là: 21; 42; 63; 84
2/ Gấp 6 lần: <=> ab=6(a+b) <=> 10a+b=6(a+b) <=> 10a+b=6a+6b
<=> 4a=5b => \(a=\frac{5b}{4}\) => b=4 và a=5
Các số cần tìm là: 45
3/ Gấp 6 lần: <=> ab=8(a+b) <=> 10a+b=8(a+b) <=> 10a+b=8a+8b
<=> 2a=7b => \(a=\frac{7b}{2}\) => b=2 và a=7
Các số cần tìm là: 72
4/ Gấp 9 lần: <=> ab=6(a+b) <=> 10a+b=9(a+b) <=> 10a+b=9a+9b
<=> a=8b => b=1 và a=8
Các số cần tìm là: 81
Đầu tiên gọi số đó là ab. Theo đề thì ab = ( a + b ) * x ( x là số lần trong đề )
Ta có :
a * 10 + b = a * x + b * x
a * 10 - a * x = b * x - b
a * ( 10 - x ) = b * ( x - 1 ) (*)
Ta sẽ sử dụng công thức (*) để giải các bài trên.
Giải :
a) Gọi số đó là ab
Theo đề thì ab = ( a + b ) * 6
Ta có :
a * 10 + b = a * 6 + b * 6
a * 10 - a * 6 = b * 6 - b
a * ( 10 - 6 ) = b * ( 6 - 1 )
a * 4 = b * 5
Vậy a phải chia hết cho 5. Vì a khác 0 và là số có 1 chữ số nên a = 5.
Thay a = 5 ta có b = 4.
Vậy số đó là 54.
b) Gọi số đó là ab.
Theo đề thì ab = ( a + b ) * 8
Ta có :
a * 10 + b = a * 8 + b * 8
a * 10 - a * 8 = b * 8 - b
a * ( 10 - 8 ) = b * ( 8 - 1 )
a * 2 = b * 7
Vậy a chỉ có thể chia hết cho 7. Vì a khác 0 và là số có 1 chữ số nên a = 7.
Thay a = 7 vào biểu thức, ta có b = 2.
Vậy số đó là 72.
c) Gọi số đó là ab.
Theo đề thì ab = ( a + b ) * 9
Ta có :
a * 10 + b = a * 9 + b * 9
a * 10 - a * 9 = b * 9 - b
a * ( 10 - 9 ) = b * ( 9 - 1 )
a = b * 8
Vậy a chia hết cho 8. Vì a khác 0 và là số có 1 chữ số nên a = 8.
Thay a = 8 vào biểu thức được b = 1.
Vậy số đó là 81.
Đ/s : a) 54; b) 72; c ) 81.
Nhận xét : với mọi x thỏa 1 < x < 10 thì số cần tìm luôn là số chia hết cho 9.
c)Gọi số tự nhiên đó là ab
Vì số tự nhiên ab gấp 9 lần tổng các chữ số của nó
⇒⇒ab = 9x(a+b)
⇔⇔10a =9a+9b
⇔⇔a = 8b
Xét 2 trường hợp:
Nếu b = 1 và a = 8 (có thể lấy được)
Nếu b = 2 và a = 16 (không thể lấy được vì ab chỉ có 2 chữ số)
Vậy khi xét qua 2 trường hợp ab = 81
a ) Gọi số đó là ab .Theo đề bài ra ta có : b ) Gọi sô đó là ab .Theo đề bài ra ta có :
ab = 6 x ( a + b ) ab = 7 x ( a + b )
10 x a + b = 6 x a + 6 x b a x 10 + b = 7 x a + 7 x b
10 x a - 6 x a = 6 x b - b 10 x a - 7 x a = 7 x b - b
4 x a = 5 x b 3 x a = 6 x b
=> số đó là 45 => ab = 36
c ) ab = 8 x ( a + b )
a x 10 + b = 8 x a + 8 x b
a x 10 - 8 x a = 8x b - b
2 x a = 7 x b
=> ab = 27
d)
ab = 9 x ( a + b )
a x 10 + b = 9 x a + 9 x b
a x 10 - 9 x a = 9 x b - b
a x 1 = 9 x 8
=>n số đó là 18
Gọi số tự nhiên đó là ab
Vì số tự nhiên ab gấp 9 lần tổng các chữ số của nó
⇒⇒ab = 9x(a+b)
⇔⇔10a =9a+9b
⇔⇔a = 8b
Xét 2 trường hợp:
Nếu b = 1 và a = 8 (có thể lấy được)
Nếu b = 2 và a = 16 (không thể lấy được vì ab chỉ có 2 chữ số)
Vậy khi xét qua 2 trường hợp ab = 81
Gọi số cần tìm là : ab
Khi đó : ab = (a + b) x 3
=> 10a + b = 3a + 3b
=> 7a = 2b
=> a = 2 ; b = 7
Vậy số cần tìm là : 27
Gọi số đó là \(\overline{abc}\left(a,b,c\in N\right)\)
Ta có \(\overline{abc}=13\left(a+b+c\right)\)
\(\Rightarrow100a+10b+c=13a+13b+13c\\ \Rightarrow87a-3b-12c=0\\ \Rightarrow29a=b+4c\)
Vì \(29a\) lẻ mà \(4c\) chẵn nên b lẻ
Lần lượt thay \(b=1;3;5;7;9\)
Ta thấy có 3 giá trị \(b=1;b=5;b=9\) thì thỏa mãn
Vậy các số cần tìm là \(117;156;195\)
Gọi số cần tìm là abc (a, b, c là các số từ 0 đến 9, a # 0) Theo bài ra ta có: abc = 11(a + b + c) 100a + 10b + c = 11a + 11b + 11c (Cấu tạo số và nhân một số với một tổng) 89a = b + 10c (Cùng bớt đi mỗi bên là 11a + 10b + c) 89a = cb => a = 1, cb = 89 => abc = 198 Thử lại: 198 : (1 + 9 + 8) = 11 Vậy số cần tìm là 198
Gọi số cần tìm là abc (a khác 0 và a,b,c là các chữ số)
abc = (a + b + c) x 11
a x 100 + b x 10 + c = a x 11 + b x 11 + c x 11
a x 89 = b + c x 10
a x 89 = b + c0
a x 89 = cb
=> cb là số có 2 chữ số nên a = 1 và cb = 89
Số cần tìm là 198
1)
Gọi số có hai chữ số đó là \(\overline{ab}\)\(\left(0\le b\le9,0< a\le9,a;b\in N\right)\)
Theo bài ra, ta có:
\(\overline{ab}:a=11\)dư \(2\)
\(\Rightarrow\overline{ab}=11.a+2\)
\(\Leftrightarrow a.10+b=a.11+2\)
\(\Leftrightarrow b=a+2\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(1;3\right);\left(2;4\right);\left(3;5\right)\left(4;6\right);\left(5;7\right);\left(6;8\right);\left(7;9\right)\right\}\)
Vậy \(\overline{ab}\in\left\{13;24;35;46;57;68;79\right\}.\)
2)
Gọi số có hai chữ số đó là \(\overline{ab}\)
Theo bài ra, ta có:
\(\overline{ab}:b=12\)dư \(3\)
\(\Rightarrow\overline{ab}=12.b+3\)
\(\Rightarrow a.10+b=b.12+3\)
\(\Rightarrow a.10=b.11+3\)
Do \(a.10⋮10\)mà \(3:10\)dư \(3\)\(\Rightarrow b.11:10\)dư \(7\)
\(\Rightarrow b=7\)
\(\Rightarrow a.10=7.11+3\)
\(\Rightarrow a.10=80\)
\(\Rightarrow a=80:10=8\)
Vậy số đó là \(87.\)
3)
Gọi số có hai chữ số đó là \(\overline{ab}\)
Theo bài ra, ta có:
\(\overline{ab}:b=9\)
\(\Rightarrow a.10+b=b.9\)
\(\Rightarrow a.10=b.8\)
\(\Leftrightarrow5.a=4.b\)
\(\Rightarrow\hept{\begin{cases}a=4\\b=5\end{cases}}\)
Vậy số đó là \(45.\)
4)
Gọi số có hai chữ số đó là \(\overline{ab}\)
Theo bài ra, ta có:
\(\overline{ab}:a=12\)
\(\Rightarrow a.10+b=a.12\)
\(\Rightarrow b=2.a\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(1;2\right);\left(2;4\right);\left(3;6\right);\left(4;8\right)\right\}\)
Vậy \(\overline{ab}\in\left\{12;24;36;48\right\}.\)
5)
Gọi số có hai chữ số đó là \(\overline{ab}\)
Theo bài ra, ta có:
\(\overline{ab}:\left(a+b\right)=5\)dư \(12\) \(\Rightarrow a+b>12\)( * )
\(\Rightarrow\overline{ab}=5.\left(a+b\right)+12\)
\(\Rightarrow10.a+b=5.a+5.b+12\)
\(\Rightarrow5a=4b+12\)
Do \(4b⋮4;12⋮4\Rightarrow5a⋮4\)
Mà \(\left(5,4\right)=1\Rightarrow a⋮4\)
\(\Rightarrow a\in\left\{4;8\right\}\)
+ Nếu \(a=4\):
\(\Rightarrow5.4=b.4+12\)
\(\Rightarrow5=b+3\)
\(\Rightarrow b=5-3=2\)
Khi đó : \(a+b=4+2< 12\)( mâu thuẫn với (*) )
+ Nếu \(a=8\):
\(5.8=4.b+12\)
\(\Rightarrow5.2=b+3\)
\(\Rightarrow b=10-3=7\)
Khi đó : \(8+7=15>12\)( hợp lý với ( * ) )
Vậy số đó là \(87.\)
Gọi số cần tìm là : abc
Theo đề bài : abc = ( a + b + c ) x 11
abc = 11 x a + 11 x b + 11 x c
a x 100 + b x 10 + c = a x 11 + b x 11 + c x 11
a x ( 11 + 89 ) + b x 10 + c = a x 11 + b x ( 10 + 1 ) + c x ( 1 + 10 )
a x 11 + a x 89 + b x 10 + c = a x 11 + b x 10 + b + c + c x 10
a x 89 = b + c x 10 ( cùng trừ đi những số hạng giống nhau )
Số cần tìm là : 198
gọi số đó là ab
ab = 3 x (a+b)
a x 10 + b = 3 x a + 3 x b
a x 10 - 3 x a = b + 3 x b
a x 7 = b x 2
vậy số đó là 27
số đó là 27
k lun nha