Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow36x-20=4y^2-4y\)
\(\Leftrightarrow18\left(2x-1\right)=\left(2y-1\right)^2+1\)
Vế trái chia hết cho 3, vế phải chia 3 luôn dư 1 hoặc 2
Vậy không tồn tại cặp số nguyên x, y thỏa mãn
Vì \(9x-5\equiv4\left[9\right]\) nên \(y\left(y-1\right)=y^2-y\equiv4\left[9\right]\) hay \(y^2-y-4⋮9\)
\(\Leftrightarrow y^2-5y+4y-20+16⋮9\)
\(\Leftrightarrow\left(y-5\right)\left(y+4\right)+16⋮9\)
\(\Leftrightarrow\left(y-5\right)\left(y+4\right)-2⋮9\)
\(\Leftrightarrow\left(y-5\right)\left(y-5+9\right)-2⋮9\)
\(\Leftrightarrow\left(y-5\right)^2+9\left(y-5\right)-2⋮9\)
\(\Leftrightarrow\left(y-5\right)^2-2⋮9\)
\(\Rightarrow\left(y-5\right)^2-2⋮3\) hay \(\left(y-5\right)^2\equiv2\left(mod3\right)\)
Điều này là vô lí vì số chính phương khi chia cho 3 không thể có số dư là 2.
Vậy pt đã cho không có nghiệm nguyên.
Giả sử \(x\ge y\ge z>0\)
\(\Rightarrow2\left(x+y+z\right)\le6x\Rightarrow xyz\le6x\Rightarrow yz\le6\Rightarrow\left(y;z\right)=\left(3;2\right)=\left(1;1\right)=\left(3;1\right);\left(4;1\right)=\left(2;1\right)=\left(6;1\right)\) Vì \(y\ge z\)
Chị làm nốt ạ.
Câu trả lời hay nhất: x² - 4x +y - 6√(y) + 13 = 0
<=> (x^2 - 4x +4) + (√(y)^2 - 6√(y) + 9) = 0
<=> (x-2)^2 + (√(y) -3)^2 = 0
VT >=0 dấu = xảy ra <=> x = 2 ; y = 9
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
<=> ((xy²)² - 16xy³ + 64y²) + (4y^2 - 4xy + x^2) = 0
<=> (xy² - 8y)^2 + (2y - x)^2 = 0
VT >=0 => dấu = <=> xy² - 8y = 0 và 2y - x = 0
<=> y = 0 ; x = 0 hoặc x = 4 ; y = 2 hoặc x = -4 ;y = -2
c/
x² - x²y - y + 8x + 7 = 0
<=> x²(1-y) + 8x - y + 7 = 0
xét delta' = 4^2 - (1-y)(7-y) = 16 - 7 -y^2 + 8y = -(y^2 -8y + 16) +25 = 25 - (y-4)^2
để pt có nghiệm thì delta' >=0
<=> (y-4)^2 <=25
<=> -1<= y <=9
=> max y = 9
=> x = 3/2 hoặc x = -1/2
3/
x² - 6x + 1 =0. nhân cả 2 vế với x^(n-1) ta được
x^(n+1) - 6x^n + x^(n-1) = 0
với S(n) = x1ⁿ +x2ⁿ ta có:
S(n+1) - 6S(n) + S(n-1) = 0
<=> S(n+1) = 6S(n) - S(n-1)
với S(1) = 6
S(2) = 22
=> S(3) nguyên
=> S(4) nguyên
=> S(n) nguyên (do biểu thức truy hồi S(n+1) = 6S(n) - S(n-1))
ta có:
S(1) không chia hết cho 5
S(2) ..............................
=> S(3) = 6S(2) - S(1) = 6.(22 -1) = 6.21 không chia hết cho 5
S(n) và S(n-1) ko chia hết cho 5 =>
S(n+1) = S(n) + S(n-1) ko chia hết cho 5
2
Do \(\overline{a56b}⋮45\)nên \(\overline{a56b}\) chia hết cho 5;9 vì \(\left(5,9\right)=1\)
\(TH1:b=5\Rightarrow\overline{a56b}=\overline{a565}\) chia hết cho 9
\(\Rightarrow a+5+6+5⋮9\Rightarrow a+16⋮9\)
Mà \(a\in\left\{1;2;3;4;5;6;7;8;9;0\right\}\)
\(\Rightarrow a=2\)
\(TH2:b=0\Rightarrow\overline{a56b}=\overline{a560}⋮9\)
\(\Rightarrow a+5+6+0⋮9\Rightarrow11⋮9\)
Lập luận tương tự ta có \(a=7\Rightarrow\overline{a56b}=7560\)
\(x^4+x^2+2=y^2-y\)
\(\Leftrightarrow\left(y-x^2-1\right)\left(y+x^2\right)=2\)
em cũng mới học lớp 6 thui
x = 1 thì y = 0