Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ Tìm nghiệm nguyên dương của phương trình.
a. 13x+3y=50
Nhận thấy 13x≤13.3=39<50 nên x≤3.
+ x=3 thì không tìm được y thoả mãn.
+ x=2 thì y=8.
+ x=1 thì không tìm được y thoả mãn.
+ x=0 thì không tìm được y thoả mãn.
Vậy (x,y)=(2,8).
2
Do \(\overline{a56b}⋮45\)nên \(\overline{a56b}\) chia hết cho 5;9 vì \(\left(5,9\right)=1\)
\(TH1:b=5\Rightarrow\overline{a56b}=\overline{a565}\) chia hết cho 9
\(\Rightarrow a+5+6+5⋮9\Rightarrow a+16⋮9\)
Mà \(a\in\left\{1;2;3;4;5;6;7;8;9;0\right\}\)
\(\Rightarrow a=2\)
\(TH2:b=0\Rightarrow\overline{a56b}=\overline{a560}⋮9\)
\(\Rightarrow a+5+6+0⋮9\Rightarrow11⋮9\)
Lập luận tương tự ta có \(a=7\Rightarrow\overline{a56b}=7560\)
\(x^2-xy=x-3y+2017\)
<=> \(x\left(x-y\right)=\left(3x-3y\right)-2x+2017\)
<=> \(x\left(x-y\right)-3\left(x-y\right)+2x-6=2017-6\)
<=> \(\left(x-y\right)\left(x-3\right)+2\left(x-3\right)=2011\)
<=> \(\left(x-3\right)\left(x-y+2\right)=2011\)
Vì x, y nguyên nên x - 3 và x - y + 2 là số nguyên
Có thể xảy ra các TH:
TH1: x -3 =1 ; x -y +2 =2011
<=> x = 4; y = -2005 tm
TH2: x -3 = 2011; x - y + 2 = 1
Tự tính
TH3 : x -3 =-1; x -y +2 =-2011. Tự tính.
TH4: x - 3 = -2011; x - y + 2 =-1. Tự tính.
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
ĐK: \(\hept{\begin{cases}x\ge1\\y\ge1\end{cases}}\)
pt <=> \(2x\sqrt{y-1}+4y\sqrt{x-1}=3xy.\)
<=> \(xy-2x\sqrt{y-1}+2xy-4y\sqrt{x-1}=0\)
<=> \(x\left(y-1\right)-2\sqrt{x}.\sqrt{x\left(y-1\right)}+x+2\left[y\left(x-1\right)-2\sqrt{y}\sqrt{y\left(x-1\right)}+y\right]=0\)
<=> \(\left(\sqrt{x\left(y-1\right)}-\sqrt{x}\right)^2+2\left(\sqrt{y\left(x-1\right)}-\sqrt{y}\right)^2=0\)
<=> \(\hept{\begin{cases}\sqrt{x\left(y-1\right)}-\sqrt{x}=0\\\sqrt{y\left(x-1\right)}-\sqrt{y}=0\end{cases}}\)vì (\(\left(\sqrt{x\left(y-1\right)}-\sqrt{x}\right)^2+2\left(\sqrt{y\left(x-1\right)}-\sqrt{y}\right)^2\ge0\)với mọi x, y)
<=> \(\hept{\begin{cases}\sqrt{x\left(y-1\right)}=\sqrt{x}\\\sqrt{y\left(x-1\right)}=\sqrt{y}\end{cases}}\Leftrightarrow\hept{\begin{cases}y-1=1\\x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=2\end{cases}}\left(tm\right)\)
Kết luận:...
Do tổng x4+y4 là một số lẻ nên x, y là 2 số khác tính chẵn - lẻ. Giả sử x là số chẵn, y là số lẻ. x = 2a và y = 2b+1.
\(x^4+y^4=\left(2a\right)^4+\left(2b+1\right)^4=16a^4+16b^4+32b^3+24b^2+8b+1\)
\(=8\left(2a^4+2b^4+4b^3+3b^3+b\right)+1\)
=> x4 + y4 chia 8 dư 1.
Mà 1995 chia 8 dư 3.
=> Không tồn tại các số nguyên a, b.
=> không tồn tại các số nguyên x, y.
phương trình có nghiệm
<=> \(a\ne0;\Delta\ge0\)<=> \(m\ne0;\left(m+3\right)^2-m.\left(m+2\right)\ge0\)
<=> \(m\ne0;4m+9\ge0\)<=> \(m\ge-\frac{9}{4}\)
Theo định lí Vi-ét thì x1+ x2 = 2.(m+3)/m và x1.x2 = (m+2)/m
=> A = 1/x1 + 1/x2 = 2.(m+3)/(m+2) = 2+2/(m+2)
Ta thấy A là số nguyên hay m+2 là ước của 2
<=> m+2 = +-2 ; +-1 <=> m= 0 ; -4 ; -1 ; 1
Vì m \(\ge\) -9/4 => m= 0 ; m= 1; m= -1 t/mãn bài toán
sorry tôi mới học lớp 6