Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2+y^2-x^2y^2-1=-1
-x^2(y^2-1)+(y^2-1)=-1
(y^2-1)(-x^2+1)=-1
suy ra trường hợp 1 y^2-1=1 và -x^2+1=-1 ko thỏa do nghiệm ko nguyên
trường hợp 2 y^2-1=-1 và -x^2+1=1
y=0,x=0
x2+y2+z2=xy+yz+zx
<=>2x2+2y2+2z2-2xy-2yz-2xz=0
<=>(x-y)2+(y-z)2+(z-x)2=0
<=>x=y=z
Thay x=y=z vào x2014+y2014+z2014=32015 ta được:
3.x3014=3.32014
=>x2014=32014
=>x=3 hoặc x=-3
Vậy x=y=z=3 hoặc x=y=z=-3
\(x^2+y^2+z^2=xy+yz+zx\)
\(2.\left(x^2+y^2+z^2\right)=2.\left(xy+yz+zx\right)\)
\(\Rightarrow2.\left(x^2+y^2+z^2\right)-2xy-2yz-2zx=0\)
\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Ta có: \(VT\ge0\forall x;y;z\)( tự c/m. nếu b ko c/m được thì bảo mình )
Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Leftrightarrow}}\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow x=y=z}\)
Có \(x^{2014}+y^{2014}+z^{2014}=3\)
\(\Rightarrow3.x^{2014}=3\)
\(\Rightarrow x^{2014}=1\)
\(\Rightarrow x=1\)
\(\Rightarrow x=y=z=1\)
Có: \(P=x^{25}+y^4+z^{2015}\)
\(\Rightarrow P=1^{25}+1^4+1^{2015}\)
\(P=1+1+1\)
\(P=3\)
Vậy \(P=3\)
Tham khảo nhé~
Ta có: x2+y2+z2=xy+yz+zx
<=>2x2+2y2+2z2=2xy+2yz+2zx
<=>2x2+2y2+2z2-2xy-2yz-2zx=0
<=>(x2-2xy+y2)+(y2-2yz+z2)+(z2-2zx+x2)=0
<=>(x-y)2+(y-z)2+(z-x)2=0
Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0}\)
=>\(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Rightarrow x=y=z}\)
=>x2014=y2014=z2014
Lại có: x2014+y2014+z2014 = 3
=>3x2014 = 3 => x2014 = 1 => \(x=\pm1\)
=>\(x=y=z=\pm1\)
Thay x,y,z vào P rồi tính
Câu 2/
\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}=1\)
Điều kiện \(\hept{\begin{cases}x^2\ne0\\x^2+y^2\ne0\\x^2+y^2+z^2\ne0\end{cases}}\)
Xét \(x^2,y^2,z^2\ge1\)
Ta có: \(\hept{\begin{cases}x^2\ge1\\x^2+y^2\ge2\end{cases}}\)
\(\Rightarrow x^2\left(x^2+y^2\right)\ge2\)
\(\Rightarrow\frac{1}{x^2\left(x^2+y^2\right)}\le\frac{1}{2}\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}\le\frac{1}{6}\left(2\right)\\\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{3}\left(3\right)\end{cases}}\)
Cộng (1), (2), (3) vế theo vế ta được
\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{2}+\frac{1}{6}+\frac{1}{3}=1\)
Dấu = xảy ra khi \(x^2=y^2=z^2=1\)
\(\Rightarrow\left(x,y,z\right)=?\)
Xét \(\hept{\begin{cases}x^2\ge1\\y^2=z^2=0\end{cases}}\) thì ta có
\(\frac{1}{x^4}+\frac{1}{x^4}+\frac{1}{x^4}=1\)
\(\Leftrightarrow x^4=3\left(l\right)\)
Tương tự cho 2 trường hợp còn lại: \(\hept{\begin{cases}x^2,y^2\ge1\\z^2=0\end{cases}}\) và \(\hept{\begin{cases}x^2,z^2\ge1\\y^2=0\end{cases}}\)
Bài 2/
Ta có: \(\frac{x}{y}+\frac{y}{z}+\frac{z}{t}+\frac{t}{x}\ge4\sqrt[4]{\frac{x}{y}.\frac{y}{z}.\frac{z}{t}.\frac{t}{x}}=4>3\)
Vậy phương trình không có nghiệm nguyên dương.
Ta có với x,y nguyên thì :
\(\left\{{}\begin{matrix}x^2\equiv0,1,4\left(mod8\right)\\y^2\equiv0,1,4\left(mod8\right)\end{matrix}\right.\)
\(\Rightarrow x^2+y^2\equiv0,1,2,5\left(mod8\right)\)
Mà : \(x^2+y^2=2014\equiv6\left(mod8\right)\) ( giả thiết )
Nên không tồn tại x,y thỏa mãn đề.