K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 3 2021

\(\Rightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)

\(\Rightarrow2\sqrt{yz}=\left(x-y-z\right)+2\sqrt{3}\)

\(\Rightarrow4yz=\left(x-y-z\right)^2+12+4\sqrt{3}\left(x-y-z\right)\)

\(\Rightarrow4\sqrt{3}\left(x-y-z\right)=4yz-12-\left(x-y-z\right)^2\) (1)

\(\sqrt{3}\) là số vô tỉ nên đẳng thức xảy ra khi: \(x-y-z=0\)

Thay ngược vào (1) \(\Rightarrow yz=3\Rightarrow\left(y;z\right)=\left(1;3\right);\left(3;1\right)\)

\(\Rightarrow\sqrt{x+2\sqrt{3}}=\sqrt{4+2\sqrt{3}}\Rightarrow x=4\)

17 tháng 11 2017

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin Wrecking Ball nhận xét

17 tháng 11 2017

Đỗ Đức Đạt cop trên Yahoo

28 tháng 1 2018

bạn ơi đề khó nhìn vậy  

28 tháng 1 2018
bạn giúp mk vs đk k bạn
13 tháng 11 2019

272`6`54-543564396738

26 tháng 4 2017

Do vai trò của x,y,z là như nhau nen giả sử z ≥ y ≥ x ≥ 1 

Ta sẽ thử trực tiếp một vài trường hợp: 

Nếu x = 1 thì 1/y + 1/z = 0 ( vô nghiệm) 

Nếu x = 2 thì 1/y + 1/z = 1/2 <=> 2y + 2z = yz <=> (y - 2)(z - 2) = 4 

Mà :0 ≤ y - 2 ≤ z - 2 và (y- 2), (z - 2) phải là ước của 4 

Do đó ta có các trường hợp: 

{ y - 2 = 1```````{ y = 3 
{ z - 2 = 4 <=>{ z = 6 

{ y- 2 = 2````````{ y = 4 
{ z - 2 = 2 <=>{ z = 4 

Nếu x = 3 thì 1/y + 1/z = 2/3 

+ Nếu y = 3 thì z = 3 

+ Nều y ≥ 4 thì 1/y + 1/z ≤ 1/4 + 1/4 = 1/2 < 1/3 

=> phương trình vô nghiệm 

Nếu x = 4 thì 1/x + 1/y + 1/z ≤ 1/4 + 1/4 + 1/4 = 3/4 < 1 

=>pt vô nghiệm 

Vậy tóm lại phương trình đã cho có 10 nghiệm (bạn tự liệt kê)

13 tháng 3 2017

\(ĐK:\)  \(x,y,z\in Z^+\)

Không mất tính tổng quát, ta giả sử  \(1\le x\le y\le z\)  nên từ pt đã cho suy ra 

\(20\ge3x^2+x^3\ge3+x^3\)  

\(\Rightarrow\) \(x^3\le17\)  hay nói cách khác  \(x\le2\)  nên kết hợp với điều kiện ở trên suy ra  \(x\in\left\{1;2\right\}\)

Ta xét các trường hợp sau đây:

\(\Omega_1:\)

13 tháng 3 2017

Bạn xét các trường hợp và đưa ra nghiệm chính xác là  \(\left(x,y,z\right)=\left(2,2,2\right)\)

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

Lời giải:

$2xyz=x+y+z$

$2=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}$

Không mất tổng quát giả sử $x\geq y\geq z$ 

$\Rightarrow xy\geq xz\geq yz$

$\Rightarrow \frac{1}{xy}\leq \frac{1}{xz}\leq \frac{1}{yz}$

$\Rightarrow 2\leq \frac{3}{yz}$$

$\Rightarrow yz\leq \frac{3}{2}$. Mà $yz$ nguyên dương nên $yz=1$

$\Rightarrow y=z=1$. Thay vào pt ban đầu:

$2x=x+2$

$x=2$

Vậy $(x,y,z)=(2,1,1)$ và hoán vị.

bạn hỏi bạn Bui Huyen nha

https://olm.vn/thanhvien/900487