Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TK: Tìm x,y,z nguyên dương thỏa mãn xyz=2(x+y+z) - Hoc24
\(\left(1+x\right)\left(y+z\right)=xyz+2\)
\(\Leftrightarrow\)\(xy+xz+y+z=xyz+2\)
\(\Leftrightarrow\)\(xyz-xy-xz+x=y+z-2+x\)
\(\Leftrightarrow\)\(x\left(yz-y-z+1\right)=x+y+z-2\)
\(\Leftrightarrow\)\(x\left(y-1\right)\left(z-1\right)=x+\left(y-1\right)+\left(z-1\right)\)
Đặt \(a=x;b=y-1;c=z-1\) pt \(\Leftrightarrow\)\(abc=a+b+c\)
Ta có : \(a\ge1;b\ge0;c\ge0\) ( do \(x,y,z\ge1\) )
Giả sử \(b=0\) pt \(\Leftrightarrow\)\(a+c=0\) ( vô lí vì \(a+c\ge1\) )
Tương tự, giả sử \(c=0\) pt \(\Leftrightarrow\)\(a+b=0\) ( vô lí vì \(a+b\ge1\) )
\(\Rightarrow\)\(a,b,c\ge1\) và \(abc=a+b+c\)
Đến đây giả sử \(a\ge b\ge c\) đc r vì a, b, c có vai trò như nhau
Giải r nhưng quên link, có j e ib gửi link khác cho :))
Chúc a học tốt ~
Đề bài này khả năng sai nhé, chắc là <= vì gần như tích nào cũng lớn hơn tổng cả
SỬA LẠI: <=
Ta có: \(xyz\le x+y+z\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge1\)
Vai trò của x,y,z như nhau nên giả sử: \(x\ge y\ge z\Rightarrow xy\ge xz\ge yz\)
Vậy: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{3}{yz}\Leftrightarrow\frac{3}{yz}\ge1\Leftrightarrow3\ge yz\)
Vậy yz=1, yz=2, yz=3
TH1: yz=1 => y=z=1 thay vào ta được x=1
TH2: yz=2 => z=1, y=2
Thay vào có: \(2x\le x+3\Leftrightarrow x\le3\)
=> x=2 hoặc x=3
Thử lại thấy thỏa mãn
TH3: zy=3 => z=1, y=3
Thay vào ta được: \(3x\le x+4\Leftrightarrow x\le\frac{3}{2}\)loại do x>=y
Vậy (x,y,x)=(1,1,1); (3,2,1);(2,2,1)
\(ĐK:\) \(x,y,z\in Z^+\)
Không mất tính tổng quát, ta giả sử \(1\le x\le y\le z\) nên từ pt đã cho suy ra
\(20\ge3x^2+x^3\ge3+x^3\)
\(\Rightarrow\) \(x^3\le17\) hay nói cách khác \(x\le2\) nên kết hợp với điều kiện ở trên suy ra \(x\in\left\{1;2\right\}\)
Ta xét các trường hợp sau đây:
\(\Omega_1:\)
Bạn xét các trường hợp và đưa ra nghiệm chính xác là \(\left(x,y,z\right)=\left(2,2,2\right)\)
x+y+z=xyz+1
Giả sử x lớn hơn =y lớn hơn =z
=> 3x> xyz+1 >xyz
=> 3> yz
do y,z nguyên dương nnee tìm đc y,z